

B.TECH. (COMPUTER SCIENCE AND ENGINEERING)
THIRD SEMESTER (DETAILED SYLLABUS)

DATA STRUCTURE

Course Outcome (CO) Bloom’s Knowledge Level (KL)

At the end of course , the student will be able to understand

CO 1
Describe how arrays, linked lists, stacks, queues, trees, and graphs are represented in memory,
used by the algorithms and their common applications. K1, K2

CO 2 Discuss the computational efficiency of the sorting and searching algorithms. K2

CO 3 Implementation of Trees and Graphs and perform various operations on these data structure. K3

CO 4
Understanding the concept of recursion, application of recursion and its implementation and
removal of recursion. K4

CO 5
Identify the alternative implementations of data structures with respect to its performance to
solve a real world problem. K5, K6

DETAILED SYLLABUS

3-1-0

Unit Topic Proposed
Lecture

I

Introduction: Basic Terminology, Elementary Data Organization, Built in Data Types in C.
Algorithm, Efficiency of an Algorithm, Time and Space Complexity, Asymptotic notations: Big
Oh, Big Theta and Big Omega, Time-Space trade-off. Abstract Data Types (ADT)

08

II

Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major
Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array
Application of arrays, Sparse Matrices and their representations.
Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly
Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal,
Polynomial Representation and Addition Subtraction & Multiplications of Single variable & Two
variables Polynomial.

08

III
Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search.
Concept of Hashing & Collision resolution Techniques used in Hashing. Sorting: Insertion Sort,
Selection, Bubble Sort, Quick Sort, Merge Sort, Heap Sort and Radix Sort.

08

IV

Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacency
Matrices, Adjacency List, Adjacency. Graph Traversal: Depth First Search and Breadth First
Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and
Kruskal algorithm. Transitive Closure and Shortest Path algorithm: Warshal Algorithm and
Dijikstra Algorithm.

08

V

Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked
Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of
postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of
recursion Problem solving using iteration and recursion with examples such as binary search,
Fibonacci numbers, and Hanoi towers. Tradeoffs between iteration and recursion.
Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and
linked implementation of queues in C, Dequeue and Priority Queue.

08

STUDYZONEADITYA.COM

ENGINEERING ALL CONTENTS
Books, Quantum, Typing Notes, Handwritten Notes,
Practical File's And All Engineering Study Materials
Available Here.

For more details visit and follow touch to icons below

B.TECH STUDY ZONE

B.TECH STUDY ZONE STUDY ZONE

studyzoneaditya.com

www.studyzoneaditya.com

https://www.instagram.com/b.techstudyzone
https://twitter.com/btechstudyzone?s=08
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
https://youtube.com/channel/UCOka9acBU03SYCeVtN82FuQ
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
https://www.instagram.com/b.techstudyzone
https://twitter.com/btechstudyzone?s=08
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
http://studyzoneaditya.com/
http://www.studyzoneaditya.com/

1–1 A (CS/IT-Sem-3)Data Structure

CONTENTS
Part-1 : Introduction : ... 1–3A to 1–5A

Basic Terminology,
Elementary Data Organization
Built in Data Types in C

Part-2 : Algorithm, Efficiency of 1–5A to 1–8A
an Algorithm, Time and
Space Complexity

Part-3 : Asymptotic Notations : 1–8A to 1–10A
Big Oh, Big Theta, and
Big Omega

Part-4 : Time-Space Trade-Off, 1–10A to 1–13A
Abstract Data Types (ADT)

Part-5 : Array : Definition, Single and 1–13A to 1–14A
Multidimensional Array

Part-6 : Representation of Arrays : 1–14A to 1–17A
Row Major Order, and Column
Major Order, Derivation of Index
Formulae for
1-D, 2-D, 3-D and n-D Array

Part-7 : Application of Arrays, Sparse 1–18A to 1–20A
Matrices and their Representation

Array and Linked List
1

1–2 A (CS/IT-Sem-3) Array and Linked List

Part-8 : Linked List : Array 1–20A to 1–29A
Implementation and
Pointer Implementation
of Singly Linked List

Part-9 : Doubly Linked List 1–29A to 1–37A

Part-10 : Circular Linked List 1–37A to 1–43A

Part-11 : Operation on a Linked 1–43A to 1–49A
List, Insertion,
Deletion, Traversal
Polynomial Representation
and Addition, Subtraction
and Multiplication of Single
Variable and Two
Variable Polynomial

1–3 A (CS/IT-Sem-3)Data Structure

Introduction : Basic Terminology, Elementary Data Organization
Built in Data Types in C.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.1. Define data structure. Describe about its need and types.

Why do we need a data type ? AKTU 2014-15, Marks 05

Answer
Data structure :
1. A data structure is a way of organizing all data items that considers not

only the elements stored but also their relationship to each other.
2. Data structure is the representation of the logical relationship existing

between individual elements of data.
3. Data structure is define as a mathematical or logical model of particular

organization of data items.
Data structure is needed because :
1. It helps to understand the relationship of one element with the other.
2. It helps in the organization of all data items within the memory.
The data structures are divided into following categories :
1. Linear data structure :

a. A linear data structure is a data structure whose elements form a
sequence, and every element in the structure has a unique
predecessor and unique successor.

b. Examples of linear data structure are arrays, linked lists, stacks
and queues.

2. Non-linear data structure :
a. A non-linear data structure it is a data structure whose elements do not

form a sequence. There is no unique predecessor or unique successor.
b. Examples of non-linear data structures are trees and graphs.

Need of data type : The data type is needed because it determines what type
of information can be stored in the field and how the data can be formatted.

Que 1.2. Discuss some basic terminology used and elementary

data organization in data structures.

1–4 A (CS/IT-Sem-3) Array and Linked List

Answer
Basic terminologies used in data structure :
1. Data : Data are simply values or sets of values. A data item refers to a

single unit of values.

2. Entity : An entity is something that has certain attributes or properties
which may be assigned values.

3. Field : A field is a single elementary unit of information representing an
attribute of an entity.

4. Record : A record is the collection of field values of a given entity.

5. File : A file is the collection of records of the entities in a given entity set.

Data organization : Each record in a file may contain many field items, but
the value in a certain field may uniquely determine the record in the file.
Such a field K is called a primary key, and the values k1, k2,... in such a field
are called keys or key values.

Que 1.3. Define data types. What are built in data types in C ?

Explain.

Answer
1. C data types are defined as the data storage format that a variable can

store a data to perform a specific operation.
2. Data types are used to define a variable before to use in a program.
3. There are two types of built in data types in C :
a. Primitive data types : Primitive data types are classified as :
i. Integer type : Integers are used to store whole numbers.
Size and range of integer type on 16-bit machine :

Type Size (bytes) Range Format
specifier

int or signed int 2 – 32,768 to 32,767 %d

unsigned int 2 0 to 65,535 %u

short int or signed
short int 1 – 128 to 127 %hd

unsigned short int 1 0 to 255 %hu

long int or signed
long int 4 – 2,147,483,648 %ld

to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295 %lu

ii. Floating point type : Floating types are used to store real numbers.

1–5 A (CS/IT-Sem-3)Data Structure

Size and range of floating point type on 16-bit machine :

Type Size (bytes) Range Format
specifier

Float 4 3.4E – 38 to 3.4E+38 %f

double 8 1.7E – 308 to 1.7E+308 %lf

long double 10 3.4E – 4932 to 1.1E+4932 %lf

iii. Character type : Character types are used to store characters value.
Size and range of character type on 16-bit machine :

Type Size (bytes) Range Format
specifier

char or signed char 1 – 128 to 127 %c

unsigned char 1 0 to 255 %c

iv. Void type : Void type is usually used to specify the type of functions
which returns nothing.

b. Non-primitive data types :
i. These are more sophisticated data types. These are derived from

the primitive data types.
ii. The non-primitive data types emphasize on structuring of a group

of homogeneous (same type) or heterogeneous (different type)
items. For example, arrays, lists and files.

Algorithm, Efficiency of an Algorithm, Time and Space Complexity.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.4. Define algorithm. Explain the criteria an algorithm must

satisfy. Also, give its characteristics.

Answer
1. An algorithm is a step-by-step finite sequence of instructions, to solve a

well-defined computational problem.
2. Every algorithm must satisfy the following criteria :

i. Input : There are zero or more quantities which are externally
supplied.

1–6 A (CS/IT-Sem-3) Array and Linked List

ii. Output : At least one quantity is produced.

iii. Definiteness : Each instruction must be clear and unambiguous.

iv. Finiteness : If we trace out the instructions of an algorithm, then
for all cases the algorithm will terminate after a finite number of
steps.

v. Effectiveness : Every instruction must be basic and essential.

Characteristics of an algorithm :
1. It should be free from ambiguity.

2. It should be concise.

3. It should be efficient.

Que 1.5. How the efficiency of an algorithm can be checked ?

Explain the different ways of analyzing algorithm.

Answer
The efficiency of an algorithm can be checked by :
1. Correctness of an algorithm
2. Implementation of an algorithm
3. Simplicity of an algorithm
4. Execution time and memory requirements of an algorithm
Different ways of analyzing an algorithm :
a. Worst case running time :

1. The behaviour of an algorithm with respect to the worst possible
case of the input instance.

2. The worst case running time of an algorithm is an upper bound on
the running time for any input.

b. Average case running time :
1. The expected behaviour when the input is randomly drawn from a

given distribution.
2. The average case running time of an algorithm is an estimate of

the running time for an “average” input.
c. Best case running time :

1. The behaviour of the algorithm when input is already in order. For
example, in sorting, if elements are already sorted for a specific
algorithm.

2. The best case running time rarely occurs in practice comparatively
with the first and second case.

Que 1.6. Define complexity and its types.

Answer
1. The complexity of an algorithm M is the function f(n) which gives the

running time and/or storage space requirement of the algorithm in
terms of the size n of the input data.

1–7 A (CS/IT-Sem-3)Data Structure

2. The storage space required by an algorithm is simply a multiple of the
data size n.

3. Following are various cases in complexity theory :
a. Worst case : The maximum value of f(n) for any possible input.
b. Average case : The expected value of f(n) for any possible input.
c. Best case : The minimum possible value of f(n) for any possible

input.
Types of complexity :
1. Space complexity : The space complexity of an algorithm is the amount

of memory it needs to run to completion.
2. Time complexity : The time complexity of an algorithm is the amount

of time it needs to run to completion.

Que 1.7. What do you understand by complexity of an

algorithm ? Compute the worst case complexity for the following
C code :
main()
{
int s = 0, i, j, n;
for (j = 0; j < (3 * n); j++)
{
for (i = 0; i < n; i++)
{
s = s + i;
}
printf(“%d”, i);

}} AKTU 2014-15, Marks 05

Answer
Complexity of an algorithm : Refer Q. 1.6, Page 1–6A, Unit-1.
Worst case complexity : (n) + (3n) = (n)

Que 1.8. How do you find the complexity of an algorithm ? What

is the relation between the time and space complexities of an
algorithm ? Justify your answer with an example.

AKTU 2015-16, Marks 10

Answer
Complexity of an algorithm : Refer Q. 1.6, Page 1–6A, Unit-1.
Relation between the time and space complexities of an algorithm :
1. The time and space complexities are not related to each other.
2. They are used to describe how much space/time our algorithm takes

based on the input.
3. For example, when the algorithm has space complexity of :

1–8 A (CS/IT-Sem-3) Array and Linked List

a. O(1) i.e., constant then the algorithm uses a fixed (small) amount
of space which does not depend on the input. For every size of the
input the algorithm will take the same (constant) amount of space.

b. O(n), O(n2), O(log (n)) - these indicate that we create additional
objects based on the length of our input.

4. In contrast, the time complexity describes how much time our algorithm
consumes based on the length of the input.

5. For example, when the algorithm has time complexity of :
a. O(1) i.e., constant then no matter how big is the input it always

takes a constant time.
b. O(n), O(n2), O(log (n)) - again it is based on the length of the input.

For example :
function(list l) { function(list l) {
for (node in l) { print(“I got a list”); }
print(node) ;
}

}
In this example, both take O(1) space as we do not create additional
objects which shows that time and space complexity might be different.

Asymptotic Notations : Big Oh, Big Theta, and Big Omega.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.9. What is asymptotic notation ? Explain the big ‘Oh’

notation.

Answer
1. Asymptotic notation is a shorthand way to describe running times for an

algorithm.
2. It is a line that stays within bounds.
3. These are also referred to as ‘best case’ and ‘worst case’ scenarios

respectively.
Big ‘Oh’ notation :
1. Big-Oh is formal method of expressing the upper bound of an algorithm’s

running time.
2. It is the measure of the longest amount of time it could possibly take for

the algorithm to complete.
3. More formally, for non-negative functions, f (n) and g(n), if there exists

an integer n0 and a constant c > 0 such that for all integers n > n0.

1–9 A (CS/IT-Sem-3)Data Structure

f (n)  cg(n)
4. Then, f (n) is Big-Oh of g (n). This is denoted as : f (n)  O(g (n))

i.e., the set of functions which, as n gets large, grow faster than a
constant time f (n).

cg(n)

f(n)

n

f(n) = O(g(n))

n0

Fig. 1.9.1.

Que 1.10. What is complexity of an algorithm ? Explain various

notations used to express the complexity of an algorithm.
OR

What are the various asymptotic notations ? Explain Big O notation.

AKTU 2017-18, Marks 07

Answer
Complexity of an algorithm : Refer Q. 1.6, Page 1–6A, Unit-1.
Notations used to express the complexity of an algorithm :
1. -Notation (Same order) :

a. This notation bounds a function to within constant factors.
b. We say f(n) = g(n) if there exist positive constants n0, c1 and c2

such that to the right of n0 the value of f(n) always lies between
c1g(n) and c2g(n) inclusive.

c g(n)2

f(n)
c g(n)1 f(n) = (g(n))

n

Fig. 1.10.1.

n0

2. Oh-Notation (Upper bound) : Refer Q. 1.9, Page 1–8A, Unit-1.
3. -Notation (Lower bound) :

a. This notation gives a lower bound for a function to within a constant
factor.

1–10 A (CS/IT-Sem-3) Array and Linked List

b. We write f(n) = g(n)) if there are positive constants n0 and c such
that to the right of n0, the value of f(n) always lies on or above cg(n).

f(n) = (g(n))

f(n)

cg(n)

n0
n

Fig. 1.10.2.
4. Little - Oh notation (o) :

a. It is used to denote an upper bound that is asymptotically tight
because upper bound provided by O-notation is not tight.

b. We write o(g(n)) = {f(n) : For any positive constant c > 0, if a
constant n0 > 0 such that 0 < f(n) < cg(n) V n > n0}

5. Little omega notation () :
a. It is used to denote lower bound that is asymptotically tight.
b. We write(g(n)) = {f(n) : For any positive constant c > 0, if a

constant n0 > 0 such that 0 < cg(n) < f(n)}

Time-Space Trade-off, Abstract Data Types (ADT).

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.11. Explain time-space trade-off in brief with suitable

example.
OR

What do you understand by time and space trade-off ? Define the
various asymptotic notations. Derive the O-notation for linear

search. AKTU 2018-19, Marks 07

Answer
Time-space trade-off :
1. The time-space trade-off refers to a choice between algorithmic solutions

of data processing problems that allows to decrease the running time of
an algorithmic solution by increasing the space to store data and
vice-versa.

1–11 A (CS/IT-Sem-3)Data Structure

2. Time-space trade-off is basically a situation where either space efficiency
(memory utilization) can be achieved at the cost of time or time efficiency
(performance efficiency) can be achieved at the cost of memory.

For Example : Suppose, in a file, if data stored is not compressed, it
takes more space but access takes less time. Now if the data stored is
compressed the access takes more time because it takes time to run
decompression algorithm.

Various asymptotic notation : Refer Q. 1.10, Page 1–9A, Unit-1.

Derivation :
Best case : In the best case, the desired element is present in the first
position of the array, i.e., only one comparison is made.

So, T(n) = O(1).

Average case : Here we assume that ITEM does appear, and that is equally
likely to occur at any position in the array. Accordingly the number of
comparisons can be any of the number 1, 2, 3,, n and each number occurs
with the probability p = 1/n. Then

T(n) = 1 . (1/n) + 2 . (1/n) + 3 . (1/n) + n . (1/n)

= (1 + 2 + 3 + + n) . (1/n)

= n . (n + 1)/2 . (1/n)

= (n + 1)/2

= O((n + 1)/2)  O(n)

Worst case : Worst case occurs when ITEM is the last element in the array
or is not there at all. In this situation n comparison is made

So, T(n) = O(n + 1)  O(n)

Que 1.12. What do you understand by time-space trade-off ?

Explain best, worst and average case analysis in this respect with

an example. AKTU 2017-18, Marks 07

Answer
Time-space trade-off : Refer Q. 1.11, Page 1–10A, Unit-1.

Best, worst and average case analysis : Suppose we are implementing
an algorithm that helps us to search for a record amongst a list of records. We
can have the following three cases which relate to the relative success our
algorithm can achieve with respect to time :

1. Best case :
a. The record we are trying to search is the first record of the list.

b. If f(n) is the function which gives the running time and / or storage
space requirement of the algorithm in terms of the size n of the
input data, this particular case of the algorithm will produce a

1–12 A (CS/IT-Sem-3) Array and Linked List

complexity C(n) = 1 for our algorithm f(n) as the algorithm will run
only 1 time until it finds the desired record.

2. Worst case :
a. The record we are trying to search is the last record of the list.

b. If f(n) is the function which gives the running time and / or storage
space requirement of the algorithm in terms of the size n of the
input data, this particular case of the algorithm will produce a
complexity C(n) = n for our algorithm f(n), as the algorithm will run
n times until it finds the desired record.

3. Average case :
a. The record we are trying to search can be any record in the list.

b. In this case, we do not know at which position it might be.

c. Hence, we take an average of all the possible times our algorithm
may run.

d. Hence assuming for n data, we have a probability of finding any
one of them is 1/n.

e. Multiplying each of these with the number of times our algorithm
might run for finding each of them and then taking a sum of all
those multiples, we can obtain the complexity C(n) for our algorithm
f(n) in case of an average case as following :

C(n) = 1·
1
2

+ 2· 1
2

 + ... + n·
1
2

C(n) = (1 + 2 + ... + n) ·
1
2
�

C(n) =
(1) 1 1

·
2 2

n n n
n

 


Hence in this way, we can find the complexity of an algorithm for
average case as

C(n) = O((n + 1)/2)

Que 1.13. What do you mean by Abstract Data Type ?

Answer
1. An Abstract Data Type (ADT) is defined as a mathematical model of the

data objects that make up a data type as well as the functions that
operate on these objects.

2. An Abstract Data Type (ADT) is the specification of the data type which
specifies the logical and mathematical model of the data type.

3. It does not specify how data will be organized in memory and what
algorithm will be used for implementing the operations.

1–13 A (CS/IT-Sem-3)Data Structure

4. An implementation chooses a data structure to represent the ADT.

5. The important step is the definition of ADT that involves mainly two
parts :

a. Description of the way in which components are related to each
other.

b. Statements of operations that can be performed on the data type.

Array : Definition, Single and Multidimensional Array.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.14. Define array. How arrays can be declared ?

Answer
1. An array can be defined as the collection of the sequential memory

locations, which can be referred to by a single name along with a number
known as the index, to access a particular field or data.

2. The general form of declaration is :
type variable-name [size];

a. Type specifies the type of the elements that will be contained in the
array, such as int, float or char and the size indicates the maximum
of elements that can be stored inside the array.

b. For example, when we want to store 10 integer values, then we can
use the following declaration, int A[10].

Que 1.15. Write short note on types of an array.

Answer
There are two types of array :
1. One-dimensional array :

a. An array that can be represented by only one-one dimension such
as row or column and that holds finite number of same type of data
items is called one-dimensional (linear) array.

b. One dimensional array (or linear array) is a set of ‘n’ finite numbers
of homogeneous data elements such as :
i. The elements of the array are referenced respectively by an

index set consisting of ‘n’ consecutive number.

1–14 A (CS/IT-Sem-3) Array and Linked List

ii. The elements of the array are stored respectively in successive
memory locations.
‘n’ number of elements is called the length or size of an array.
The elements of an array ‘A’ may be denoted in C language as :
A[0], A[1], A[2], ... A[n –1]

2. Multidimensional arrays :
a. An array can be of more than one dimension. There are no

restrictions to the number of dimensions that we can have.
b. As the the dimensions increase the memory requirements increase

drastically which can result in shortage of memory.
c. Hence a multidimensional array must be used with utmost care.
d. For example, the following declaration is used for 3-D array :

int a [50] [50] [50];

Representation of Arrays : Row Major Order, and Column
Major Order, Derivation of Index Formulae for

1–D, 2–D, 3–D and n–D Array.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.16. What is row major order ? Explain with an example.

AKTU 2014-15, Marks 05

Answer
1. In row major order, the element of an array is stored in computer

memory as row-by-row.
2. Under row major representation, the first row of the array occupies the

first set of memory locations reserved for the array, the second row
occupies the next set, and so forth.

3. In row major order, elements of a two-dimensional array are ordered
as :
A11, A12, A13, A14, A15, A16, A21, A22, A23, A24, A25, A26, A31,, A46, A51, A52,
......, A56
Example :
Let us consider the following two-dimensional array :

a b c d
e f g h
i j k l

 
 
 
  

1–15 A (CS/IT-Sem-3)Data Structure

a. Move the elements of the second row starting from the first element
to the memory location adjacent to the last element of the first row.

b. When this step is applied to all the rows except for the first row, we
have a single row of elements. This is the row major representation.

c. By application of above mentioned process, we get

{a, b, c, d, e, f, g, h, i, j, k, l}

Que 1.17. Explain column major order with an example.

Answer
1. In column major order the elements of an array is stored as column-by-

column, it is called column major order.
2. Under column major representation, the first column of the array

occupies the first set of memory locations reserved for the array, the
second column occupies the next set, and so forth.

3. In column major order, elements are ordered as :
A11, A21, A31, A41, A51, A12, A22, A32, A42, A52, A13,, A55, A16, A26,, A56.
Example : Consider the following two-dimensional array :

a b c d
e f g h
i j k l

 
 
 
  

a. Transpose the elements of the array. Then, the representation will
be same as that of the row major representation.

b. Then perform the process of row-major representation.
c. By application of above mentioned process, we get

{a, e, i, b, f, j, c, g, k, d, h, l}.

Que 1.18. Write a short note on address calculation for 2D array.

OR
Determine addressing formula to find the location of (i, j)th element
of a m × n matrix stored in column major order.

OR
Derive the index formulae for 1-D and 2-D array.

Answer
1. Let us consider a two-dimensional array A of size m × n. Like linear

array system keeps track of the address of first element only, i.e., base
address of the array (Base (A)).

2. Using the base address, the computer computes the address of the
element in the ith row and jth column i.e., LOC (A[i][j]).

Formulae :
a. Column major order :

LOC(A[i][j]) = Base (A) + w[m(j – lower bound for column index)

1–16 A (CS/IT-Sem-3) Array and Linked List

+ (i – lower bound for row index)]
LOC(A[i][j]) = Base (A) + w[mj + i] in C/C++

b. Row major order :
LOC(A[i][j]) = Base (A) + w[n(i – lower bound for column index)

+ (j – lower bound for row index)]
LOC(A[i][j]) = Base (A) + w[ni + j] in C/C++
where w denotes the number of words per memory location for the
array A or the number of bytes per storage location for one element of
the array.

Que 1.19. Explain the formulae for address calculation for 3-D
array with example.

Answer
In three-dimensional array, address is calculated using following two
methods :
Row major order :
Location (A[i, j, k]) = Base (A) + mn (k – 1) + n (i – 1) + (j – 1)
Column major order :
 Location (A[i, j, k]) = Base (A) + mn (k – 1) + m (j – 1) + (i – 1)
For example : Given an array [1..8, 1..5, 1..7] of integers. If Base (A) = 900
then address of element A[5, 3, 6], by using rows and columns methods are :
The dimensions of A are : M = 8, N = 5, R = 7, i = 5, j = 3, k = 6
Row major order :

Location (A[i, j, k]) = Base (A) + mn (k – 1) + n (i – 1) + (j – 1)
Location (A[5, 3, 6]) = 900 + 8 × 5(6 – 1) + 5(5 – 1) + (3 – 1)

= 900 + 40 × 5 + 5 × 4 + 2
= 900 + 200 + 20 + 2 = 1122

Column major order :
Location (A[i, j, k]) = Base (A) + mn (k – 1) + m (j – 1) + (i – 1)

Location (A[5, 3, 6]) = 900 + 8 × 5(6 – 1) + 8(3 – 1) + (5 – 1)
= 900 + 40 × 5 + 8 × 2 + 4
= 900 + 200 +16 + 4 = 1120

Que 1.20. Consider the linear arrays AAA [5 : 50], BBB [– 5 : 10] and
CCC [1 : 8].
a. Find the number of elements in each array.
b. Suppose base (AAA) = 300 and w = 4 words per memory cell for

AAA. Find the address of AAA [15], AAA [35] and AAA [55].

AKTU 2015-16, Marks 10

Answer
a. The number of elements is equal to the length; hence use the formula :

1–17 A (CS/IT-Sem-3)Data Structure

Length = UB – LB + 1
Length (AAA) = 50 – 5 + 1 = 46
Length (BBB) = 10 – (– 5) + 1 = 16
Length (CCC) = 8 – 1 + 1 = 8

b. Use the formula
LOC (AAA [i]) = Base (AAA) + w (i – LB)
LOC (AAA [15]) = 300 + 4 (15 – 5) = 340
LOC (AAA [35]) = 300 + 4 (35 – 5) = 420
AAA [55] is not an element of AAA, since 55 exceeds UB = 50.

Que 1.21. Suppose multidimensional arrays P and Q are declared

as P(– 2: 2, 2: 22) and Q(1: 8, – 5: 5, – 10 : 5) stored in column major order
i. Find the length of each dimension of P and Q.
ii. The number of elements in P and Q.
iii. Assuming base address (Q) = 400, W = 4, find the effective indices

E1, E2, E3 and address of the element Q[3, 3, 3].

AKTU 2018-19, Marks 07

Answer
i. The length of a dimension is obtained by

Length = Upper Bound – Lower Bound + 1

Hence, the lengths of the dimension of P are,

L1 = 2 – (– 2) + 1 = 5; L2 = 22 – 2 + 1 = 21

The lengths of the dimension of Q are,

L1 = 8 – 1 + 1 = 8; L2 = 5 – (– 5) + 1 = 11; L3 = 5 – (– 10) + 1 = 16

ii. Number of elements in P = 21 × 5 = 105 elements

Number of elements in Q = 8 × 11 × 16 = 1408 elements

iii. The effective index Ei is obtained from Ei = ki – LB, where ki is the given
index and LB, is the Lower Bound. Hence,

E1 = 3 – 1 = 2; E2 = 3 – (– 5) = 8; E3 = 3 – (– 10) = 13

The address depends on whether the programming language stores Q
in row major order or column major order. Assuming Q is stored in
column major order.

E3L2 = 13 × 11 = 143

E3L2 + E2 = 143 + 8 = 151

(E3L2)L1 = 151 * 8 = 1208

(E2L2+E2)L1 + E1 = 1208 + 2 = 1210

Therefore, LOC(Q[3,3,3]) = 400 + 4(1210) = 400 + 4840 = 5240

1–18 A (CS/IT-Sem-3) Array and Linked List

Application of Arrays, Sparse Matrices and their Representation.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.22. Write a short note on application of arrays.

Answer
1. Arrays are used to implement mathematical vectors and matrices, as

well as other kinds of rectangular tables. Many databases, small and
large, consist of one-dimensional arrays whose elements are records.

2. Arrays are used to implement other data structures, such as lists, heaps,
hash tables, queues and stacks.

3. Arrays are used to emulate in-program dynamic memory allocation,
particularly memory pool allocation.

4. Arrays can be used to determine partial or complete control flow in
programs, as a compact alternative to multiple “if” statements.

5. The array may contain subroutine pointers (or relative subroutine
numbers that can be acted upon by SWITCH statements) that direct the
path of the execution.

Que 1.23. What are sparse matrices ? Explain.

Answer

1. Sparse matrices are the matrices in which most of the elements of the
matrix have zero value.

2. Two general types of n-square sparse matrices, which occur in various
applications, as shown in Fig. 1.23.1.

3. It is sometimes customary to omit block of zeros in a matrix as in
Fig. 1.23.1. The first matrix, where all entries above the main diagonal
are zero or, equivalently, where non-zero entries can only occur on or
below the main diagonal, is called a lower triangular matrix.

4. The second matrix, where non-zero entries can only occur on the diagonal
or on elements immediately above or below the diagonal, is called
tridiagonal matrix.

1–19 A (CS/IT-Sem-3)Data Structure

4
3
1

– 7

– 5
0
8

6
– 1 3

5
1

– 3
4
9

3
– 3

2
6
4 – 7

() Triangular matrixa () Tridiagonal matrixb
Fig. 1.23.1.

Que 1.24. Write a short note on representation of sparse matrices.

Answer
There are two ways of representing sparse matrices :
1. Array representation :

i. In the array representation of a sparse matrix, only the non-zero
elements are stored so that storage space can be reduced.

ii. Each non-zero element in the sparse matrix is represented as (row,
column, value).

iii. For this a two-dimensional array containing three columns can be
used. The first column is for storing the row numbers, the second
column is for storing the column numbers and the third column
represents the value corresponding to the non-zero element at
(row, column) in the first two columns.

iv. For example, consider the following sparse matrix :

2 0 0 0
0 1 0 0
0 4 3 0

 
 
 
  

The above matrix can be represented as :

Row Column Value

0 0 2
1 1 1
2 1 4
2 2 3

2. Linked representation :
i. In the linked list representation each node has four fields. These

four fields are defined as :

a. Row : Index of row, where non-zero element is located.

b. Column : Index of column, where non-zero element is located.

c. Value : Value of non-zero element located at index – (row,
column).

d. Next node : Address of next node.

Node structure : ColumnRow Value Address

1–20 A (CS/IT-Sem-3) Array and Linked List

Example :
0 0 3 0
0 0 5 7
0 2 0 0

 
 
 
  

Start

0 2 3 1 2 5 1 3 7 2 1 2 Null

Que 1.25. Explain the upper triangular and lower triangular

sparse matrices. Suggest a space efficient representation for sparse
matrices.

Answer
1. The matrix, where all entries above the main diagonal are zero or

equivalently, where non-zero entries can only occur, on or below the
main diagonal, is called lower triangular matrix.

2. A matrix in which all the entries below the main diagonal are zero is
called upper triangular matrix.

Space efficient representation for sparse matrices : Refer Q. 1.24,
Page 1–19A, Unit-1.

Linked List : Array Implementation and
Pointer Implementation of Singly Linked List.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.26. Define the term linked list. Write a C program to

implement singly linked list for the following function using array :
i. Insert at beginning ii. Insert at end
iii. Insert after element iv. Delete at end
v. Delete at beginning vi. Delete after element
vii. Display in reverse order

Answer
i. Linked list :

1. A linked list, or one-way list, is a linear collection of data elements,
called nodes, where the linear order is given by means of pointers.

1–21 A (CS/IT-Sem-3)Data Structure

Information part of third node
Next pointer field of third node

Start

Fig. 1.26.1.

×

2. Each node is divided into two parts: the first part contains the
information of the element, and the second part, called the link
field or next pointer field, contains the address of the next node in
the list.

Program :
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
struct node {

int info;
struct node *link;

} ;
struct node *first;
void main()

i. Insert at beginning :
void insert_beginning() {
struct node *ptr;
ptr = (struct node*)malloc(sizeof(struct node));
if (ptr == NULL) {
printf (“overflow\n”) ;
return;
}
printf (“input new node information”);
scanf (“%d”, &ptr -> info) ;
ptr -> link = first;
first = ptr;
}

ii. Insert at end :
void insert_end() {
struct node *ptr; *cpt;
ptr = (struct node*)malloc(sizeof(struct node));
if (ptr == NULL) {
printf (“Link list is overflow\n”);
return;
}
printf (“input new node information”);
scanf (“%d”, &ptr -> info);
cpt = first;
while (cpt -> link != NULL)
cpt = cpt -> link;

1–22 A (CS/IT-Sem-3) Array and Linked List

cpt -> link = ptr;
ptr -> link = NULL;

iii. Insert after element :
void insert_given_node() {
struct node *ptr, *cpt;
int data;
ptr = (struct node*)malloc(sizeof(struct node));
if (ptr == NULL) {
printf (“overflow\n”);
return;
}
printf (“input new node information”);
scanf (“%d”, &ptr -> info);
printf (“input information of node after which insertion will be made”) ;
scanf (“%d”, &data) ;
cpt = first;
while (cpt -> info != data)
cpt = cpt -> link;
ptr -> link = cpt -> link;
cpt -> link = ptr;
}

iv. Delete at end :
void delete_end() {
struct node *ptr, *cpt;
if (first == NULL) {
printf (“underflow\n”);
return;
}
ptr = first;
while (ptr -> link != NULL) {
cpt = ptr;
ptr = ptr -> link;
}
cpt -> link = NULL;
free (ptr);
}

v. Delete at beginning :
void delete_beginning() {
struct node *ptr;
if (first == NULL) {
printf (“underflow\n”) ;
return;
}
ptr = first;
first = ptr -> link;
free (ptr) ;
}

1–23 A (CS/IT-Sem-3)Data Structure

vi. Delete after element :
void delete_given_info() {
struct node *ptr, *cpt;
int data;
if (first == NULL) {
printf (“underflow\n”) ;
return;
}
ptr = first;
printf (“input information of node to be deleted”) ;
scanf (“%d”, & data);
while (ptr -> info != data) {
cpt = ptr;
ptr = ptr -> link;
}
cpt -> link = ptr -> link;
free (ptr);
}

vii. Display in reverse order :
reverse_list() {

ptr = First;
cpt = NULL;
while (ptr != NULL) {

cpt = ptr -> link;
ptr -> link = tpt;
cpt = ptr;
ptr = cpt;

} }

Que 1.27. Write algorithm of following operation for linear linked

list :
i. Traversal ii. Insertion at beginning
iii. Search an element iv. Delete node at specified location
v. Deletion at end

Answer
i. Traversing a linked list : Let LIST be a linked list in memory. This

algorithm traverses LIST, applying an operation PROCESS to each
element of LIST. The variable PTR points to the node currently being
processed.
1. Set PTR := START [Initializes pointer PTR]
2. Repeat Steps 3 and 4 while PTR != NULL
3. Apply PROCESS to PTR -> INFO
4. Set PTR := PTR -> LINK [PTR now points to the next node]

[End of Step 2 loop]
5. Exit

1–24 A (CS/IT-Sem-3) Array and Linked List

ii. Insertion at beginning : Here START is a pointer variable which
contains the address of first node. ITEM is the value to be inserted.
1. If (START == NULL) Then
2. START = New Node [Create a new node]
3. START->INFO = ITEM [Assign ITEM to INFO field]
4. START->LINK = NULL [Assign NULL to LINK field]

Else
5. Set PTR = START [Initialize PTR with START]
6. START = New Node [Create a new node]
7. START->INFO = ITEM [Assign ITEM to INFO field]
8. START->LINK = PTR [Assign PTR to LINK field]

[End of If]
9. Exit

iii. Search an element : Here START is a pointer variable which contains
the address of first node. ITEM is the value to be searched.
1. Set PTR = START, LOC = 1 [Initialize PTR and LOC]
2. Repeat While (PTR != NULL)
3. If (ITEM == PTR -> INFO) Then [Check if ITEM matches with

INFO field]
4. Print: ITEM is present at location LOC
5. Return
6. Else
7. PTR = PTR -> LINK [Move PTR to next node]
8. LOC = LOC + 1 [Increment LOC]
9. [End of If]
10. [End of While Loop]
11. Print: ITEM is not present in the list
12. Exit

iv. Delete node at specified position : Here START is a pointer variable
which contains the address of first node. PTR is a pointer variable which
contains address of node to be deleted. PREV is a pointer variable which
points to previous node. ITEM is the value to be deleted.
1. If (START == NULL) Then [Check whether list is empty]
2. Print: Linked-List is empty.
3. Else If (START -> INFO == ITEM) Then

[Check if ITEM is in 1st node]
4. PTR = START
5. START = START -> LINK [START now points to 2nd node]
6. Delete PTR
7. Else
8. PTR = START, PREV = START
9. Repeat While (PTR != NULL)
10. If (PTR -> INFO == ITEM) Then

[If ITEM matches with PTR->INFO]
11. PREV -> LINK = PTR -> LINK [Assign LINK field of PTR to PREV]
12. Delete PTR
13. Else

1–25 A (CS/IT-Sem-3)Data Structure

14. PREV = PTR [Assign PTR to PREV]
15. PTR = PTR -> LINK [Move PTR to next node]

[End of Step 10 If]
[End of While Loop]

16. Print: ITEM deleted
[End of Step 1 If]

17. Exit
v. Deletion at end : Here START is a pointer variable which contains the

address of first node. PTR is a pointer variable which contains address of
node to be deleted. PREV is a pointer variable which points to previous
node. ITEM is the value to be deleted.
1. If (START == NULL) Then [Check whether list is empty]
2. Print: Linked-List is empty.
3. Else
4. PTR = START, PREV = START
5. Repeat While (PTR -> LINK != NULL)
6. PREV = PTR [Assign PTR to PREV]
7. PTR = PTR -> LINK [Move PTR to next node]

[End of While Loop]
8. ITEM = PTR -> INFO [Assign INFO of last node to ITEM]
9. If (START -> LINK == NULL) Then

[If only one node is left]
10. START = NULL [Assign NULL to START]
11. Else
9. PREV -> LINK = NULL

[Assign NULL to link field of second last node]
[End of Step 9 If]

10. Delete PTR
11. Print : ITEM deleted

[End of Step 1 If]
12. Exit

Que 1.28. Implement linear linked list using pointer for following

functions :
i. Insert at beginning ii. Insert at end
iii. Insert after element iv. Delete at end
v. Delete at beginning vi. Delete after element
vii. Display in reverse order

Answer
#include<stdio.h>
#include<conio.h>
#include<process.h>
typedef struct simplelink {
int data;
struct simplelink *next;

1–26 A (CS/IT-Sem-3) Array and Linked List

} node;
i. Function to insert at beginning :

node *insert_begin(node *p)
{
node *temp;
temp = (node *)malloc(sizeof(node));
printf(“\nEnter the inserted data:”);
scanf(“%d”,&temp->data);
temp->next = p;
p = temp;
return(p);
}

ii. Function to insert at end :
node *insert_end(node *p){
node *temp, *q;
q = p;
temp=(node*)malloc(sizeof(node));
printf(“\nEnter the inserted data;”);
scanf(“%d”,&temp->data);
while(p->next != NULL)
{
p = p->next;
}
p->next = temp;
temp->next = (node *)NULL;
return(q);
}

iii. Function to insert after element:
node *insert_after(node *p) {
node temp, *q;
int x;
q = p;
printf(“\nEnter the data(after which you want to enter data):”);
scanf(“%d”,&x);
while(p->data != x) {
p = p->next;
}
temp = (node *)malloc(sizeof(node));
printf(“\nEnter the inserted data:”);
scanf(“%d”,&temp->data);
temp->next = p->next;
p->next = temp;
return (q);
}

iv. Function to delete last node :
node *del end(node *p) {

1–27 A (CS/IT-Sem-3)Data Structure

node * q, *r;
r = p;
q = p;
if(p->next == NULL)
{
r = (node *)NULL;
}
else
{
while(p->next := NULL)
{
q = p;
p = p->next;
}
q->next = (node *)NULL;
}
free(p);
return(r);
}

v. Function to delete first node :
node *delete_begin(node *p) {
node *q;
q = p;
q = p->next;
free(q);
return(p);
}

vi. Function to delete node after element :
node “delete_after(node, *p)
{
node *temp, *q;
int x;
q = p;
printf(“\nEnter the data(after which you want to delete):”);
scanf(“%d” ,&x);
while(p->data != x) {
p = p->next;
}
temp = p->next;
p->next = temp->next;
free(temp);
return (q);
}

vii. Function to reverse the list :
node *reverse(node *p) {
node *q, *r;

1–28 A (CS/IT-Sem-3) Array and Linked List

q = (node *)NULL;
while(p != NULL) {
r = q;
q = p;
p = p->next;
p->next = r;
}
return(q);
}

Que 1.29. What are the advantages and disadvantages of single

linked list ?

Answer
Advantages :
1. Linked lists are dynamic data structures as it can grow or shrink during

the execution of a program.

2. The size is not fixed.

3. Data can store non-continuous memory blocks.

4. Insertion and deletion of nodes are easier and efficient. Unlike array a
linked list provides flexibility in inserting a node at any specified position
and a node can be deleted from any position in the linked list.

5. Many more complex applications can be easily carried out with linked
lists.

Disadvantages :
1. More memory : In the linked list, there is a special field called link field

which holds address of the next node, so linked list requires extra space.

2. Accessing to arbitrary data item is complicated and time consuming
task.

Que 1.30. Write an algorithm that reverses order of all the

elements in a singly linked list.

Answer
1. To reverse a linear linked list, three pointer fields are used.

2. These are PREV, PTR, REV which hold the address of previous node,
current node and will maintain the linked list.

Algorithm :
1. PTR = FIRST

2. TPT = NULL

3. Repeat step 4 while PTR != NULL

4. REV = PREV

1–29 A (CS/IT-Sem-3)Data Structure

1. An array is a list of finite
number of elements of same
data type i.e., integer, real
or string etc.

2. Elements can be accessed
randomly.

3. Array is classified as :
a. 1-D array
b. 2-D array
c. n-D array

4. Each array element is
independent and does not
have a connection with
previous element or with its
location.

5. Array elements cannot be
added, deleted once it is
declared.

6. In array, elements can be
modified easily by
identifying the index value.

7. Pointer cannot be used in
array.

A linked list is a linear collection
of data elements called nodes
which are connected by links.

Elements cannot be accessed
randomly. It can be accessed only
sequentially.

A linked list can be linear, doubly
or circular linked list.

Location or address of element is
stored in the link part of previous
element or node.

The nodes in the linked list can be
added and deleted from the list.

In linked list, modifying the node
is a complex process.

Pointers are used in linked list.

5. PREV = PTR
6. PTR = PTR  LINK
7. PREV  LINK = REV

[End of while loop]
8. START = PREV
9. Exit

Que 1.31. Write difference between array and linked list.

AKTU 2014-15, Marks 05

Answer

S. No. Array Linked list

Time-Space Trade Off, Abstract Data Types (ADT).

1–30 A (CS/IT-Sem-3) Array and Linked List

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.32. Explain doubly linked list.

Answer
1. The doubly or two-way linked list uses double set of pointers, one pointing

to the next node and the other pointing to the preceding node.

2. In doubly linked list, all nodes are linked together by multiple links
which help in accessing both the successor and predecessor node for
any arbitrary node within the list.

3. Every node in the doubly linked list has three fields :

LPT INFO RPT

Fig. 1.32.1.

4. LPT will point to the node in the left side (or previous node) i.e., LPT will
hold the address of the previous node, RPT will point to the node in the
right side (or next node) i.e., RPT will hold the address of the next node.

5. INFO field store the information of the node.

6. A doubly linked list can be shown as follows :
LPT RPT

NULL INFO INFO INFO INFO NULL

Fig. 1.32.2. Doubly linked list.

7. The structure defined for doubly linked list is:
struct node

{
int info;
struct node *rpt;
struct node *lpt;

} node;

Que 1.33. What are doubly linked lists ? Write C program to create

doubly linked list. AKTU 2015-16, Marks 10

Answer
Doubly linked list : Refer Q. 1.32, Page 1–30A, Unit-1.
Program :

include<stdio.h>

1–31 A (CS/IT-Sem-3)Data Structure

include<conio.h>
include<alloc.h>
struct node

{
int info ;
struct node *lpt ;
struct node *rpt ;
} ;

struct node *first ;
void main ()
{
create () ;
getch () ;
}
void create ()
{
struct node *ptr, *cpt ;
char ch ;
ptr = (struct node *) malloc (size of (struct node)) ;
printf (“Input first node information”) ;
scanf (“%d”, & ptr  info) ;
ptr  lpt = NULL ;
first = ptr ;
do
{
cpt = (struct node *) malloc (size of (struct node)) ;
printf (“Input next node information”);
scanf (“%d”, & cpt  info) ;
ptr  rpt = cpt ;
cpt  lpt = ptr ;
ptr = cpt ;
printf (“Press <Y/N> for more node”) ;
ch = getch ();
}
while (ch == ‘Y’) ;
ptr  rpt = NULL ;
}

Que 1.34. Implement doubly linked list using pointer for following

functions :
i. Insert at beginning
ii. Insert at end
iii. Searching an element
iv. Delete at beginning
v. Delete at end
vi. Delete entire list

1–32 A (CS/IT-Sem-3) Array and Linked List

Answer
#include<stdio.h>
#include<conio.h>
typedef struct n{
int data;
struct n *prev;
struct n *next;
}node;
node *head = NULL, *tail = NULL;
i. Function to insert at beginning :

void insert beg(node*h, int d) {
node *temp;
temp = (node *)malloc(sizeof(node));
temp->data = d;
temp->prev = NULL;
if(head == NULL)
{
temp->next = NULL;
head = tail = temp;
return;
}
temp->next = h;
h->prev = temp;
h = h->prev;
head = h;
}

ii. Function to insert at end :
void insert_end(node *t, int d) {
node *temp;
temp = (node*)malloc(sizeof(node));
temp->data = d;
temp->next = NULL;
if(head == NULL) {
temp->prev = NULL;
head = tail = temp;
return;
}
temp->prev = t;
t->next = temp;
t = t->next;
tail = t;
}

iii. Function to search an element :
node *find(node *h, int aft) {
while(h->next != head && h->data != aft)

1–33 A (CS/IT-Sem-3)Data Structure

h = h->next;
if(h->next == head && h->data != aft)
return (node*) NULL;
else
return h;
}

iv. Function to delete at beginning :
void delete_beg(node *h, node *t) {
if(head == (node*)NULL) {
printf(“\nList is empty.”);
getch();
return;
}
if(head == tail) {
free(h);
head = tail = (node *)NULL;
return;
}
if(h->next == t) {
tail->prev = NULL;
head = tail;
}
else {
head = head->next;
head->prev = NULL;
}
free(h);
}

v. Function to delete at end :
void delete_end(node *h, node *t) {
if(head == (node *)NULL) {
printf(“\nList is empty.”);
getch();
return;
}
if(head == tail) {
free(h);
head = tail = (node*)NULL;
return;
}
if(t->prev == h) {
head->next = NULL;
tail = head;
}
else {
tail = tail->prev;
tail->next = NULL;

1–34 A (CS/IT-Sem-3) Array and Linked List

}
free(t);
}
void display(node *h) {
while(h != NULL) {
printf(n“/%d”, h->data);
h = h->next;
}
}

vi. Function to delete entire list :
void free_list(node *list) {
node *t;
while(list != NULL) {
t = list;
list = list->next;
free(t);

}
}

Que 1.35. Write algorithm of following operation for doubly linked

list :
i. Traversal
ii. Insertion at beginning
iii. Delete node at specific location
iv. Deletion from end.

OR
Write an algorithm or C code to insert a node in doubly link list in

beginning. AKTU 2014-15, Marks 05

Answer
i. Traversing of two-way linked list :
a. Forward Traversing :

1. PTR  FIRST.
2. Repeat step 3 to 4 while PTR != NULL.
3. Process INFO (PTR).
4. PTR  RPT (PTR).
5. STOP.

b. Backward Traversing :
1. PTR  FIRST.
2. Repeat step (3) while RPT (PTR) != NULL.
3. PTR  RPT (PTR)
4. Repeat step (5) to (6) while PTR != NULL.
5. Process INFO (PTR).
6. PTR LPT (PTR).
7. STOP.

1–35 A (CS/IT-Sem-3)Data Structure

ii. Insertion at beginning :
1. IF PTR = NULL then Write OVERFLOW

Go to Step 9
[END OF IF]

2. SET NEW_NODE = PTR
3. SET PTR = PTR -> NEXT
4. SET NEW_NODE -> DATA = VAL
5. SET NEW_NODE -> PREV = NULL
6. SET NEW_NODE -> NEXT = START
7. SET HEAD -> PREV = NEW_NODE
8. SET HEAD = NEW_NODE
9. EXIT

iii. Delete node at specific location :
1. IF HEAD = NULL then Write UNDERFLOW

Go to Step 9
[END OF IF]

2. SET TEMP = HEAD
3. Repeat Step 4 while TEMP -> DATA != ITEM
4. SET TEMP = TEMP -> NEXT

[END OF LOOP]
5. SET PTR = TEMP -> NEXT
6. SET TEMP -> NEXT = PTR -> NEXT
7. SET PTR -> NEXT -> PREV = TEMP
8. FREE PTR
9. EXIT

iv. Deletion from end :
1. IF HEAD = NULL

Write UNDERFLOW
Go to Step 7
[END OF IF]

2. SET TEMP = HEAD
3. Repeat Step 4 WHILE TEMP -> NEXT != NULL
4. SET TEMP = TEMP -> NEXT

[END OF LOOP]
5. SET TEMP -> PREV -> NEXT = NULL
6. FREE TEMP
7. EXIT

Que 1.36. Write a program in C to delete a specific element in

single linked list. Double linked list takes more space than single
linked list for sorting one extra address. Under what condition,
could a double linked list more beneficial than single linked list.

AKTU 2018-19, Marks 07

Answer
Program to delete a specific element from a single linked list :

#include <stdio.h>

1–36 A (CS/IT-Sem-3) Array and Linked List

#include <stdlib.h>
// A linked list node
struct Node
{
int data;
struct Node *next;
};
/* Given a reference (pointer to pointer) to the head of a list
and an int, inserts a new node on the front of the list. */
void push(struct Node** head_ref, int new_data)
{
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
/* Given a reference (pointer to pointer) to the head of a list
and a position, deletes the node at the given position */
void deleteNode(struct Node **head_ref, int position)
{
// If linked list is empty
if (*head_ref == NULL)
return;
// Store head node
struct Node* temp = *head_ref;
// If head needs to be removed
if (position == 0)
{
*head_ref = temp->next; // Change head
free(temp); // free old head
return;
}
// Find previous node of the node to be deleted
for (int i = 0; temp != NULL && i < position – 1; i++)
temp = temp->next;
// If position is more than number of nodes
if (temp == NULL || temp->next == NULL)
return;
// Node temp->next is the node to be deleted
// Store pointer to the next of node to be deleted
struct Node *next = temp->next->next;
// Unlink the node from linked list
free(temp->next); // Free memory
temp->next = next; // Unlink the deleted node from list
}
// This function prints contents of linked list starting from
// the given node

1–37 A (CS/IT-Sem-3)Data Structure

void printList(struct Node *node)
{
while (node != NULL)
{
printf(“%d ”, node->data);
node = node->next;
}
}
/* Program to test above functions*/
int main()
{
/* Start with the empty list */
struct Node* head = NULL;
push(&head, 7);
push(&head, 1);
push(&head, 3);
push(&head, 2);
push(&head, 8);
puts(“Created Linked List: ”);
printList(head);
deleteNode(&head, 4);
puts(“\nLinked List after Deletion at position 4: ”);
printList(head);
return 0;
}

Double linked list is more beneficial than single linked list because :
1. A double linked list can be traversed in both forward and backward

direction.
2. The delete operation in double linked list is more efficient if pointer to

the node to be deleted is given.
3. In double linked list, we can quickly insert a new node before a given

node.
4. In double linked list, we can get the previous node using previous pointer

but in singly liked list we traverse the list to get the previous node.

Circular Linked List.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

1–38 A (CS/IT-Sem-3) Array and Linked List

Que 1.37. What is meant by circular linked list ? Write the

functions to perform the following operations in a doubly linked
list.
a. Creation of list of nodes.
b. Insertion after a specified node.
c. Delete the node at a given position.
d. Sort the list according to descending order
e. Display from the beginning to end.

AKTU 2016-17, Marks 15

Answer
Circular linked list : A circular list is a linear linked list, except that the last
element points to the first element, Fig. 1.37.1 shows a circular linked list
with 4 nodes for non-empty circular linked list, there are no NULL pointers.

start

Fig. 1.37.1.

Functions :
a. To create a list : Refer Q. 1.33, Page 1–30A, Unit-1.
b. To insert after a specific node :

void insert_given_node ()
{
struct node *ptr, *cpt, *tpt, *rpt, *lpt;
int m;
ptr = (struct node *) malloc (size of (struct node));
if (ptr == NULL)
{
printf (“OVERFLOW”);
return;
}
printf (“input new node information”);
scanf (“%d”, & ptr  info);
printf (“input node information after which insertion”);
scanf (“%d”, & m);
cpt = first;
while (cpt  info != m)
cpt = cpt  rpt;
tpt = cpt  rpt;
cpt  rpt = ptr;

1–39 A (CS/IT-Sem-3)Data Structure

ptr  lpt = cpt;
ptr  rpt = tpt;
tpt  lpt = ptr;
printf (“Insertion is done\n”);
}

c. To delete the node at a given position :
void deleteNode(int data) {
struct dllNode *nPtr, *tmp = head;
if (head == NULL) {
printf(“Data unavailable\n”);
return;
} else if (tmp->data == data) {
nPtr = tmp->next;
tmp->next = NULL;
free(tmp);
head = nPtr;
totNodes– –;
} else {
while (tmp->next != NULL && tmp->data != data) {
nPtr = tmp;
tmp = tmp->next;
}
if (tmp->next == NULL && tmp->data != data) {
printf(“Given data unavailable in list\n”);
return;
} else if (tmp->next != NULL && tmp->data == data) {
nPtr->next = tmp->next;
tmp->next->previous = tmp->previous;
tmp->next = NULL;
tmp->previous = NULL;
free(tmp);
printf(“Data deleted successfully\n”);
totNodes – –;
} else if (tmp->next == NULL && tmp->data == data) {
nPtr->next = NULL;
tmp->next = tmp->previous = NULL;
free(tmp);
printf(“Data deleted successfully\n”);
totNodes– –;
}
}
}

d. To sort the list according to descending order :
void insertionSort() {
struct dllNode *nPtr1, *nPtr2;
int i, j, tmp;
nPtr1 = nPtr2 = head;

1–40 A (CS/IT-Sem-3) Array and Linked List

for (i = 0; i < totNodes; i++) {
tmp = nPtr1->data;
for (j = 0; j < i; j++)
nPtr2 = nPtr2->next;
for (j = i; j > 0 && nPtr2->previous->data < tmp; j--) {
nPtr2->data = nPtr2->previous->data;
nPtr2 = nPtr2->previous;
}
nPtr2->data = tmp;
nPtr2 = head;
nPtr1 = nPtr1->next;
}
}

e. To display from the beginning to end :
void display()
{
if(head == NULL)
printf(“\nList is Empty!!!”);
else
{
struct Node *temp = head;
printf(“\nList elements are: \n”);
printf(“NULL <--- ”);
while(temp -> next != NULL)
{
printf(“%d <===> ”,temp -> data);
}
printf(“%d ---> NULL”, temp -> data);
}
}

Que 1.38. Write a C program to implement circular linked list for

following functions :
i. Searching of an element
ii. Insertion at specified position
iii. Deletion at the end
iv. Delete entire list

Answer
#include<stdio.h>
#include<conio.h>
typedef struct n{
int data;
struct n *next;
}node;
node *head = NULL;

1–41 A (CS/IT-Sem-3)Data Structure

void insert_cir_end node *h, int d) {
node *temp;
temp = (node*)malloc(sizeof(node));
temp->data = d;
if(head == NULL) {
head = temp;
temp->next = head;
return;
}
while(h->next != head)
h = h->next;
temp->next = h->next;
h->next = temp;
}
i. Function to search an element :

node *find(node *h, int aft) {
while(h->next != head && h->data != aft)
h = h->next;
if(h->next == head && h->data != aft)
return (node*)NULL;
else
return h;
}

ii. Function to insert node at specified position :
void insert_cirsp_pos(node *h, int pos, int d)
{
node *temp, *loc;
int p = 0;
while(h->next != head && p < pos – 1)
{

loc = h;
p++;
h = h->next;

}
if(pos > pos + 1 && h->next == head) || pos < 0)
{
printf(“\nPosition does not exists.”);
getch();
}
if((p + 2) == pos) {
loc = h;
}
temp = (node*)malloc(sizeof(node));
temp->data = d;
temp->next = loc->next;
if(pos == 1) {

h = head;

1–42 A (CS/IT-Sem-3) Array and Linked List

while(h->next != head)
h = h->next;
h->next = temp;
head = temp;
}

else
loc->next = temp;

}
void display (node *h) {
while (h->next != head) {
printf(“%d”, h->data);
h = h->next;
}
printf(“%d”, h->data);
}

iii. Function to delete at the end :
void delete_cir_end(node *h) {
node *temp;
if(head == NULL) {
printf(“\nList is empty”);
getch();
}
if(h->next == head) {
printf(“\nNode deleted. List is empty”);
getch();
head = NULL;
free(h);
return;
}
while(h->next != head) {
temp = h;
h = h->next;
}
temp->next = h->next;
free(h);
}

iv. Function to delete entire list :
void free_list(node *list) {
node *t;
while(list != NULL) {
t = list;
list = list->next;
}
}

1–43 A (CS/IT-Sem-3)Data Structure

Que 1.39. Write an algorithm to insert a node at the end in a

circular linked list. AKTU 2017-18, Marks 07

Answer
1. If PTR = NULL
2. Write OVERFLOW
3. Go to Step 1

[END OF IF]
4. SET NEW_NODE = PTR
5. SET PTR = PTR -> NEXT
6. SET NEW_NODE -> DATA = VAL
7. SET NEW_NODE -> NEXT = HEAD
8. SET TEMP = HEAD
9. Repeat Step 10 while TEMP -> NEXT != HEAD
10. SET TEMP = TEMP -> NEXT

[END OF LOOP]
11. SET TEMP -> NEXT = NEW_NODE
12. EXIT

Operation on a Linked List, Insertion, Deletion, Traversal
Polynomial Representation and Addition, Subtraction and

Multiplications of Single Variable and Two Variable Polynomial.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.40. Write an algorithm to implement insertion, deletion

and traversal on a singly linked list.

Answer
Refer Q. 1.27, Page 1–23A, Unit-1.

Que 1.41. Write a C program to implement insertion, deletion

operation on a doubly linked list.

Answer
Refer Q. 1.34, Page 1–31A, Unit-1.

1–44 A (CS/IT-Sem-3) Array and Linked List

Que 1.42. Write a C function for traversal operation on a doubly

linked list.

Answer
Function for forward traversing :
void ftraverse ()
{

struct node *ptr;
printf (“forward traversing :/n”);
ptr = first ;
while (ptr != NULL)

{
printf (“%d \n”, ptr -” info) ;

ptr = ptr -> rpt;
}

}
Function for backward traversing :
void btraverse ()

{
struct node * ptr ;
printf (“Backward traversing :\n”)
ptr = first ;
while (ptr  rpt != NULL)

ptr = ptr  rpt ;
while (ptr != NULL)
{

printf (“%d \n”, ptr -> info) ;
ptr = ptr -> lpt;

}
}

Que 1.43. Write a program in C to implement insertion, deletion

and traversal in circular linked list.

Answer
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
struct node

{
int info;
struct node *link;

} ;
struct node *first;
void main()

1–45 A (CS/IT-Sem-3)Data Structure

{
void create(), traverse(), insert_beg(), insert_end(),
delete_beg(), delete_end();
clrscr() :
create() ;
traverse() ;
insert_beg() ;
traverse() ;
insert_end() ;
traverse() ;
delete_beg() ;
traverse() ;
getch() ;

}
void create()
{

struct node *ptr, *cpt ;
char ch ;
ptr = (struct node *) malloc (size of (struct node)) ;
printf(“input first node”) ;
scanf(“%d” & ptr -> info) ;
first = ptr ;
do {
cpt = (struct node *) malloc (size of (struct node)) ;
printf (“Input next node”) ;
scanf (“%d” & cpt -> info) ;
ptr -> link = cpt ;
ptr = cpt ;
print f (“Press <Y/N> for more node”) ;
ch = getch () ;

}
while (ch == “Y”);
ptr -> link = first ;
}
void traverse ()
{

struct node *ptr ;
printf (“Traversing of link list ; \n”) ;
ptr = first ;
while = (ptr != first)

{
printf (“%d\n”, ptr -> info) :
ptr = ptr -> link ;

}
}
void insert_beg ()
{

1–46 A (CS/IT-Sem-3) Array and Linked List

struct node *ptr;
ptr = (struct node*) malloc (sizeof (struct node));
if (ptr == NULL)
{ printf (“overflow\n”) ;

return ;
}
printf (“Input New Node”);
scanf (“%d”, &ptr -> info) ;
cpt = first ;
while (cpt -> link != first)

{
cpt = cpt -> link ;
}

ptr -> Link = first;
first = ptr ;
cpt -> link = first ;
}
void insert_end()
{
struct node *ptr; *cpt;
ptr = (struct node*) malloc (sizeof (struct node));
if (ptr == NULL)
{
printf(“overflow\n”) ;
return ;
}
printf (“Input New Node information”);
scanf (“%d”, &ptr -> info);
cpt = first;
while (cpt -> link != first) ;
cpt = cpt -> link;
cpt -> link = ptr;
ptr -> link = first ;
}
void delete_beg ()
{
struct node *ptr, *cpt ;
if (first == NULL)
{
printf (“underflow\n”) ;
return;
}
cpt = first;
while (cpt -> link != First)

cpt = cpt ->link ;
first = ptr -> link;
cpt -> link = first ;

1–47 A (CS/IT-Sem-3)Data Structure

free (ptr) ;
}
void delete_end()
{
struct node *ptr, *cpt;
if (first == NULL)
{

printf (“underflow\n”);
return;

}
cpt = first;
while (cpt -> link != first)
{
ptr = cpt;
cpt = cpt -> link;
}
ptr -> link = first;
free (cpt);

}

Que 1.44. Explain the method to represent the polynomial

equation using linked list.

Answer
1. In the linked representation of polynomials, each node should consist of

three elements, namely coefficient, exponent and a link to the next
term.

2. The coefficient field holds the value of the coefficient of a term, the
exponent field contains the exponent value of that term and the link
field contains the address of the next term in the polynomial.

coeff expo link

Fig. 1.44.1.

For example : Let us consider the polynomial of degree 4 i.e., 3x4 + 8x2

+ 6x + 8 can be written as 3 * power (x, 4) + 8 * power (x, 2) + 6 * power
(x, 1) + 8 * power (x, 0)
It can be represented as linked list as

NULL3 4 8 2 6 1 8 0

Fig. 1.44.2.

3. The link coming out of the last node is NULL pointer.
In case of polynomial of 3 variables i.e., x, y, z can also be represented as
linked list as shown in Fig. 1.44.3.

1–48 A (CS/IT-Sem-3) Array and Linked List

power x power y power z coeff next

Fig. 1.44.3.
For example : Let us consider the following polynomial of 3 variable
3x2 + 2xy2 + 5y3 + 7yz.
We can replace each term of the polynomial with node of the linked list
as

2 0 0 3 1 2 0 2 0 3 0 5 0 1 1 7 NULL

Fig. 1.44.4.

Que 1.45. Explain the method to represent the polynomial
equation using linked list. Write and explain method to add two
polynomial equations using linked list.

Answer
Representation of polynomial : Refer Q. 1.44, Page 1–47A, Unit-1.
Addition of two polynomials using linked lists :
Let p and q be the two polynomials represented by the linked list.
1. While p and q are not null, repeat step 2.
2. If powers of the two terms are equal then,

if the terms do not cancel then insert the sum of the terms into the sum
(resultant)
Polynomial
Update p
Update q
Else if the (power of the first polynomial) > (power of second polynomial)
Then insert the term from first polynomial into sum polynomial
Update p
Else insert the term from second polynomial into sum polynomial
Update q

3. Copy the remaining terms from the non-empty polynomial into the sum
polynomial.

Example : Let us consider the addition of two polynomials of single variable
5x4 + 6x3 + 2x2 + 10x + 4 and 7x3 + 3x2 + x + 7. We can visualize this as follows :

4 3 2

3 2

4 3 2

5 6 2 10 4

7 3 7

5 13 5 11 11

x x x x

x x x

x x x x

   

   

   

i.e., to add two polynomials, compare their corresponding terms starting
from the first node and move towards the end node.

1–49 A (CS/IT-Sem-3)Data Structure

Que 1.46. Write and explain method to multiply polynomial

equation using linked list.

Answer
1. The multiplication of polynomials is performed by multiplying coefficient

and adding the respective power.

2. To produce the multiplication of two polynomials following steps are
performed :

a. Check whether two given polynomials are non-empty. If anyone
polynomial is empty then polynomial multiplication is not possible.
So exit.

b. Second polynomial is scanned from left to right.

c. For each term of the second polynomial, the first polynomial is
scanned from left to right and its each term is multiplied by the
term of the second polynomial, i.e., find the coefficient by multiplying
the coefficients and find the exponent by adding the exponents.

d. If the product term already exists in the resulting polynomial then
its coefficients are added, otherwise a new node is inserted to
represent this product term.

For example : Let us consider two polynomial 8x4 + 6x2 + 5x + 2 and
3x2 + x + 2 and perform multiplication as

8 + 6 + 5 + 2 x x x
4 2

24x
6 + 18 x4 + 15 x

3 + 6x
2

+ 8x
5 + 6 x

3 + 5 x
2

+ 2x
+16 x

4
12 x

2 + 10 x + 4

24 x
6

+ 8 x
5

+ 34 x
4

+ 21 x
3

+ 23 x
2

+ 12 x + 4

× 3 + + 2x x
2

+

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. Define data structure. Describe about its need and types.
Why do we need a data type ?

Ans. Refer Q. 1.1.

1–50 A (CS/IT-Sem-3) Array and Linked List

Q. 2. What do you understand by complexity of an algorithm ?
Compute the worst case complexity for the following C
code :
main()
{
int s = 0, i, j, n;
for (j = 0; j < (3 * n); j++)
{
for (i = 0; i < n; i++)
{
s = s + i;
}
printf(“%d”, i);
}}

Ans. Refer Q. 1.7.

Q. 3. How do you find the complexity of an algorithm ? What is
the relation between the time and space complexities of an
algorithm ? Justify your answer with an example.

Ans. Refer Q. 1.8.

Q. 4. What are the various asymptotic notations ? Explain Big O
notation.

Ans. Refer Q. 1.10.

Q. 5. What do you understand by time and space trade-off ? Define
the various asymptotic notations. Derive the O-notation
for linear search.

Ans. Refer Q. 1.11.

Q. 6. What do you understand by time-space trade-off ? Explain
best, worst and average case analysis in this respect with
an example.

Ans. Refer Q. 1.12.

Q. 7. Suppose multidimensional arrays P and Q are declared as
P(– 2: 2, 2: 22) and Q(1: 8, – 5: 5, – 10 : 5) stored in column major
order

i. Find the length of each dimension of P and Q.
ii. The number of elements in P and Q.

iii. Assuming base address (Q) = 400, W = 4, find the effective
indices E1, E2, E3 and address of the element Q[3, 3, 3].

Ans. Refer Q. 1.21.

Q. 8. Write difference between array and linked list.
Ans. Refer Q. 1.31.

1–51 A (CS/IT-Sem-3)Data Structure

Q. 9. What are doubly linked lists ? Write C program to create
doubly linked list.

Ans. Refer Q. 1.33.

Q. 10. Write an algorithm or C code to insert a node in doubly link
list in beginning.

Ans. Refer Q. 1.35.

Q. 11. Write a program in C to delete a specific element in single
linked list. Double linked list takes more space than single
linked list for sorting one extra address. Under what
condition, could a double linked list more beneficial than
single linked list.

Ans. Refer Q. 1.36.

Q. 12. What is meant by circular linked list ? Write the functions
to perform the following operations in a doubly linked list.

a. Creation of list of nodes.
b. Insertion after a specified node.
c. Delete the node at a given position.
d. Sort the list according to descending order
e. Display from the beginning to end.

Ans. Refer Q. 1.37.

Q. 13. Write an algorithm to insert a node at the end in a circular
linked list.

Ans. Refer Q. 1.39.



2–1 A (CS/IT-Sem-3)Data Structure

CONTENTS
Part-1 : Stacks : Abstract Data Type 2–2A to 2–3A

Primitive Stack Operations :
Push and Pop

Part-2 : Arrays and Linked 2–3A to 2–9A
Implementation of Stack in C

Part-3 : Application of Stack : 2–9A to 2–15A
Prefix and Postfix Expression,
Evaluation of Postfix Expression

Part-4 : Iteration and Recursion : 2–16A to 2–25A
Principles of Recursion, Tail
Recursion, Removal of Recursion
Problem Solving Using Iteration
and Recursion with Examples such
as Binary Search, Fibonacci Number
and Hanoi Towers, Tradeoff between
Iteration and Recursion

Part-5 : Queues : Operation on Queue : 2–25A to 2–26A
Create, Add, Delete, Full and Empty

Part-6 : Circular Queues, Array 2–27A to 2–34A
and Linked Implementation
of Queue in C

Part-7 : Dequeue and Priority Queue 2–34A to 2–36A

Stacks and Queues
2

2–2 A (CS/IT-Sem-3) Stacks and Queues

Stacks : Abstract Data Type, Primitive
Stack Operations : Push and Pop.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.1. What do you mean by stack ? Explain all its operation

with suitable example.

Answer
1. A stack is one of the most commonly used data structure.

2. A stack, also called Last In First Out (LIFO) system, is a linear list in
which insertion and deletion can take place only at one end, called top.

3. This structure operates in much the same way as stack of trays.

4. If we want to remove a tray from stack of trays it can only be removed
from the top only.

5. The insertion and deletion operation in stack terminology are known
as PUSH and POP operations.

Stack of trays

6

–5

12

10
8

4
3
2
1
0

top

12
10
8

2
1
0

top

9
11

7
12

10
8

5
4
3
2
1
0

top

Fig. 2.1.1.

(a) Stack after pushing 8, 10, 12, – 5, 6

(b) Stack after poping
elements 6, – 5

(c) Stack after pushing
elements 7, 11, 9

2–3 A (CS/IT-Sem-3)Data Structure

6. Following operation can be performed on stack :

i. Create stack (s) : To create an empty stack s.

ii. PUSH (s, i) : To push an element i into stack s.

iii. POP (s) : To access and remove the top element of the stack s.

iv. Peek (s) : To access the top element of stack s without removing it
from the stack s.

v. Overflow : To check whether the stack is full.

vi. Underflow : To check whether the stack is empty.

Que 2.2. Write short note on abstract data type.

Answer
Refer Q. 1.13, Page 1–12A, Unit-1.

Que 2.3. Discuss PUSH and POP operation in stack and write

down their algorithm.

Answer
PUSH operation : In push operation, we insert an element onto stack.
Before inserting, first we increase the top pointer and then insert the element.

Algorithm :
PUSH (STACK, TOP, MAX, DATA)

1. If TOP = MAX – 1 then write “STACK OVERFLOW and STOP”

2. READ DATA

3. TOP  TOP + 1

4. STACK [TOP]  DATA

5. STOP

POP operation : In pop operation, we remove an element from stack. After
every pop operation top of stack is decremented by 1.

Algorithm :
POP (STACK, TOP, ITEM)

1. If TOP < 0 then write “STACK UNDERFLOW and STOP”

2. STACK [TOP]  NULL

3. TOP  TOP – 1

4. STOP

Arrays and Linked Implementation of Stack in C.

2–4 A (CS/IT-Sem-3) Stacks and Queues

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.4. Write a C function for array implementation of stack.

Write all primitive operations. AKTU 2015-16, Marks 10

Answer
#include<stdio.h>
#include<conio.h>
#define MAX 50

int stack [MAX + 1], top = 0 ;
void main()
{

clrscr();
void create(), traverse(), push(), pop();
create();
printf(“\n stack is:\n”);
traverse();
push();
printf(“After Push the element in the stack is :\n”);
traverse();
pop();
printf(“After Pop the element in the stack is :\n”);
traverse();
getch();

}
void create()
{

char ch;
do
{
top ++;
printf(“Input Element”);
scanf (“%d”, stack[top]);
printf(“Press<Y>for more element\n”);
ch = getch();
}

while (ch == ‘Y’)
}
void traverse()
{

2–5 A (CS/IT-Sem-3)Data Structure

int i ;
for(i = top; i > 0; – –i)
printf(“%d\n”, stack[i]);

}
void push()
{

int m;
if(top == MAX)

{
printf(“Stack is overflow”);
return;

}
printf(“Input new element to insert”);
scanf(“%d”, &m) ;
top++;
stack[top] = m;

}
void pop()
{

if(top == 0)
{

printf(“Stack is underflow\n”);
return;

}
stack[top] = ‘\0’ ;
top – – ;

}

Que 2.5. Write a C function for linked list implementation of

stack. Write all the primitive operations.

AKTU 2015-16, Marks 10

Answer
#include<stdio.h>
#include<conio.h>
#include<alloc.h>

struct node
{
int info;
struct node *link;
};

struct node *top;
void main()
{
void create(), traverse(), push(), pop();
create();

2–6 A (CS/IT-Sem-3) Stacks and Queues

printf(“\n stack is :\n”);
traverse();
pop();
printf(“After push the element in the stack is : \n”) ;
traverse();
pop();
printf(“After pop the element in the stack is : \n”)
traverse();
getch();
}
void create()
{
struct node *ptr, *cpt;
char ch;
ptr = (struct node *) malloc (sizeof (struct node));
printf(“Input first info”);
scanf(“%d”, &ptr -> info);
ptr ->link = NULL;

do
{
cpt = (struct node *) malloc (sizeof (struct node));
printf(“Input next information”);
scanf(“%d”, &cpt -> info);
cpt -> link = ptr;
ptr = cpt;
printf(“Press <Y/N> for more information”);
ch = getch() ;
}
while (ch == ‘Y’)
top = ptr;
}

void traverse()
{
struct node *ptr ;
printf (“Traversing of stack : \n”);
ptr = top ;
while (ptr != NULL)
{
printf (“%d\n”, ptr -> info);
ptr = ptr ->link;
}
}

void push()
{
struct node *ptr;
ptr = (struct node *) malloc (sizeof (struct node));
if(ptr == NULL)

2–7 A (CS/IT-Sem-3)Data Structure

{
printf(“Overflow\n”);
return;
}
printf(“Input New node information”);
scanf(“%d”, &ptr -> info);
ptr ->link = top;
top = ptr;
}

void pop()
{
struct node *ptr;
if(top == NULL)
{
printf (“Underflow \n”);
return;
}
ptr = top;
top = ptr ->link;
free (ptr);
}

Que 2.6. What is stack ? Implement stack with singly linked list.

AKTU 2014-15, Marks 05

Answer
Stack : Refer Q. 2.1, Page, 2–2A Unit-2.
Implementation using singly linked list :
typedef struct stack
{

int *data;
struct stack *next;
}stack;

void push(stack **top, int *data)
{
stack *newn;
newn = (stack *)malloc(sizeof(stack));
newn->data = data;
newn->next = (stack *)NULL;
if(*top == NULL)
{
*top = newn;
return;
}
newn->next = (*top);
*top = newn;

2–8 A (CS/IT-Sem-3) Stacks and Queues

}
int *pop(stack **top)
{
int *rval = (int *)NULL;
stack *tmp;
if(*top != NULL)
{

tmp = *top;
*top = (*top)->next;
rval = tmp->data;
free(tmp);

}
return(rval);

}

Que 2.7. Write a function in C language to reverse a string using

stack. AKTU 2014-15, Marks 05
OR

What is a stack ? Write a C program to reverse a string using stack.

AKTU 2017-18, Marks 07

Answer
Stack : Refer Q. 2.1, Page 2–2A, Unit-2.
#include<stdio.h>
#include<conio.h>
#include<string.h>
#define MAX 20

int top = – 1;
char stack [MAX];
char pop();

push(char);

main()
{
clrscr();
char str [20];
int i;
printf(“Enter the string : ”);
gets(str);
for(i = 0; i < strlen(str); i++)
push (str [i]);
for(i = 0; i < strlen(str); i++)
str[i] = pop();
printf(“Reversed string is :”);

2–9 A (CS/IT-Sem-3)Data Structure

puts (str);
getch();
}

push (char item)
{
if(top == MAX – 1)
printf(“Stack overflow\n”);
else
stack[++top] = item;
}

char pop()
{
if(top == – 1)
printf(“Stack underflow \n”);
else
return stack [top – –];
}

Application of Stack : Prefix and Postfix Expression
Evaluation of Postfix Expression.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.8. Write a short note on the application of stack.

Answer

Applications of stack are as follows :
1. Expression evaluation : Stack is used to evaluate prefix, postfix and

infix expressions.

2. Expression conversion : An expression can be represented in prefix,
postfix or infix notation. Stack can be used to convert one form of
expression to another.

3. Syntax parsing : Many compilers use a stack for parsing the syntax of
expressions, program blocks etc. before translating into low level code.

4. Parenthesis checking : Stack is used to check the proper opening and
closing of parenthesis.

2–10 A (CS/IT-Sem-3) Stacks and Queues

5. String reversal : Stack is used to reverse a string. We push the
characters of string one by one into stack and then pop character from
stack.

6. Function call : Stack is used to keep information about the active
functions or subroutines.

Que 2.9. Write down the algorithm to convert infix notation into

postfix.
OR

Write down algorithm to evaluate the infix expression.

Answer
Polish (Q, P)

Let Q is an arithmetic expression written in infix notation. This algorithm
finds the equivalent postfix expression P.

1. Push “(”onto STACK, and add “)” to end of Q.

2. Scan Q from left to right and repeat steps 3 to 6 for each element of Q
until the STACK is empty.

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered push it onto STACK.

5. If an operator  is encountered, then :

a. Repeatedly pop from STACK and add to P each operator (on the top
of STACK) which has the same precedence as or higher precedence
than .

b. Add  to STACK.

[End if]

6. If a right parenthesis is encountered, then :

a. Repeatedly pop from STACK and add to P each operator (on the top
of STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis [Do not add it to P]

[End if]

[End of step 2]

7. End.

Que 2.10. Convert following infix expression into postfix

expression A + (B * C + D)/E. AKTU 2014-15, Marks 05

2–11 A (CS/IT-Sem-3)Data Structure

Answer
(A + (B *C + D)/E)

Character Stack Postfix

((
A (A
+ (+ A
((+(A
B (+(AB
* (+(* AB
C (+(* ABC
+ (+(+ ABC*
D (+(+ ABC*D
) (+ ABC*D+
/ (+/ ABC*D+
E (+/ ABC*D+E
) (ABC*D+E/+

Resultant postfix expression : ABC * D + E/+

Que 2.11. Consider the following infix expression and convert

into reverse polish notation using stack. A + (B * C – (D/E ^ F) * H)

AKTU 2018-19, Marks 07

Answer
A + (B*C – (D/E ^ F)*H)

Character Stack Postfix

A (A
+ (+ A
((+ (A
B (+ (AB
* (+ (* AB
C (+ (* ABC
– (+ (– (ABC*
((+ (– (ABC*
D (+ (– (ABC*D
/ (+ (– (/ ABC*D
E (+ (– (/ ABC*DE
^ (+ (– (/^ ABC*DE
F (+ (– (/^ ABC*DEF
) (+ (– (/^ ABC*DEF
* (+ (– * ABC*DEF ^/
H (+ (– * ABC*DEF ^/ H

Resultant reverse polish expression : ABC * DEF ^ / H

2–12 A (CS/IT-Sem-3) Stacks and Queues

Que 2.12. Write down the algorithm to evaluate the postfix

expression.
OR

Write down the algorithm to convert postfix to infix.

Answer
This algorithm finds the value of an arithmetic expression P written in postfix
notation.

1. Add a right parenthesis “)” to P.
[This acts as a sentinel]

2. Scan P from left to right and repeat step 3 and 4 for each element of
P until the sentinel “)” is encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator  is encountered then :
a. Remove the top two elements of STACK, where A is the top element

and B is the next-to-top element.
b. Evaluate B  A.
c. Place the result of (b) back on STACK.

[End of if structure]
[End of step 2 loop]

5. Set value equal to top element on STACK.

6. End.

Que 2.13. Consider the following arithmetic expression written

in infix notation :
E = (A + B) * C + D / (B + A * C) + D
E = A/B C + D * E – A * C

Convert the above expression into postfix and prefix notation.

Answer
a. E = (A + B) * C + D / (B + A * C) + D

Postfix : E = (A + B) * C + D / (B + T1) + D T1 = AC *
= (A + B) * C + D / T2 + D T2 = BT1 +
= T3 * C + D / T2 + D T3 = AB +
= T3 * C + T4 + D T4 = DT2/
= T5 + T4 + D T5 = T3 C *
= T6 + D T6 = T5T4 +
= T7 T7 = T6D +

On putting the values of T’s
= T6D +
= T5T4 + D +
= T3 C * DT2 / + D +
= AB + C * DBT1 + / + D +
= AB + C * DBAC * + / + D +

2–13 A (CS/IT-Sem-3)Data Structure

Prefix : E = (A + B) * C + D / (B + A * C) + D

= (A + B) * C + D / (B + T1) + D T1 = * AC

= (A + B) * C + D / T2 + D T2 = + BT1

= T3 * C + D / T2 + D T3 = + AB

= T3 * C + T4 + D T4 = / DT2

= T5 + T4 + D T5 = * T3C

= T6 + D T6 = + T5T4

= T7 T7 = + T6D

On putting the values of T’s

E = + T6D

= + + T5 T4D

= + + * T3C / DT2D

= + + * + ABC / D + B T1D

= + + * + ABC / D + B * ACD

b. E = A /B  C + D * E – A * C
Postfix : E = A / T1 + D * E – A * C T1 = BC ^

= T2 + D * E – A * C T2 = AT1/

= T2 + T3 – A * C T3 = DE *

= T2 + T3 – T4 T4 = AC *

= T5 – T4 T5 = T2T3 +

= T6 T6 = T5 T4 –

On putting the values of T’s

= T5 T4 –

= T2 T3 + AC *

= AT1/DE * + AC *

= ABC  /DE * + AC *

Prefix : E = A /B C + D * E – A * C

= A / T1 + D * E – A * C T1 =  BC

= T2 + D * E – A * C T2 = /AT1

= T2 + T3 – A * C T3 = * DE

= T2 + T3 – T4 T4 = * AC

= T5 – T4 T5 = + T2T3

= T6 T6 = – T5 T4

On putting the values of T’s

= – T5T4

= – + T2T3 * AC

2–14 A (CS/IT-Sem-3) Stacks and Queues

= – + / AT1 * DE * AC

= – + / A ^BC * DE * AC

Que 2.14. Solve the following :

a. ((A – (B + C) * D) / (E + F)) [Infix to postfix]
b. (A + B) + *C – (D – E)  F [Infix to prefix]
c. 7 5 2 + * 4 1 5 – / – [Evaluate the given postfix expression]

AKTU 2016-17, Marks 10

Answer
a. ((A – (B + C)*D)/(E + F))

((A – (B + C)*D)/
X

(EF +))

((A – (B + C)*D)/X)

Y

((A – (BC +) * D) / X)

((A – (Y * D)) / X

Z

((A – (YD *)) / X)

((A – Z)) / X)

T

((AZ –) / X)

(T / X)

T X /

Now put the values,

AZ – EF + /

AYD * – EF + /

ABC + D * – EF + /

This is the required postfix form.

b. (A + B) + *C – (D – E)  F

X

(+ AB)
+ * C – (D – E)  F

X + * C – (D – E)  F

X + * C –
Y

(– DE)
 F

X + * C – (Y  F)

X + * C –
Z

(Y F)

X + *(C – Z)

2–15 A (CS/IT-Sem-3)Data Structure

X + *
T

(– CZ)

X + * T

* + XT

Now put the values,

* + + AB – CZ

* + + AB – C  YF

* + + AB – C  – DEF

This is the required prefix form.

c. 752 + * 415 – / – :

i. First this expression is converted into infix expression as :
Symbol scanned Stack

7 7
5 7, 5
2 7, 5, 2
+ 7, 5 + 2
* 7*(5 + 2)
4 7*(5 + 2), 4
1 7*(5 + 2), 4, 1
5 7*(5 + 2), 4, 1, 5
– 7*(5 + 2), 4, 1 – 5
/ 7*(5 + 2), 4/(1 – 5)
– (7*(5 + 2)) – (4/(1 – 5))

2
5
7

5 2 7
7

 
7 *7 49

7, 5, 2 inserted + occurred * occurred

4
49

1
4
49

5
1
4
49

1 5 4
4
49

  
4 / 4 1

49
  

4 inserted 1 inserted 5 inserted – occurred / occurred

  49 (1) 50

– occurred
Hence, the value is 50

2–16 A (CS/IT-Sem-3) Stacks and Queues

Iteration and Recursion, Principles of Recursion, Tail Recursion,
Removal of Recursion Problem Solving Using Iteration and

Recursion with Examples such as Binary Search, Fibonacci Number
and Hanoi Towers, Trade off between Iteration and Recursion.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.15. What is iteration ? Explain.

Answer
1. Iteration is the repetition of a process in order to generate a (possibly

unbounded) sequence of outcomes.

2. The sequence will approach some end point or end value.

3. Each repetition of the process is a single iteration, and the result of each
iteration is then the starting point of the next iteration.

4. Iteration allows us to simplify our algorithm by stating that we will
repeat certain steps until told.

5. This makes designing algorithms quicker and simpler because they do
not have to include lots of unnecessary steps.

6. Iteration is used in computer programs to repeat a set of instructions.

7. Count controlled iteration will repeat a set of instructions upto a specific
number of times, while condition controlled iteration will repeat the
instructions until a specific condition is met.

Que 2.16. What is recursion ? Explain.

Answer
1. Recursion is a process of expressing a function that calls itself to perform

specific operation.

2. Indirect recursion occurs when one function calls another function that
then calls the first function.

3. Suppose P is a procedure containing either a call statement to itself or
a call statement to a second procedure that may eventually result in a
call statement back to the original procedure P.

4. Then P is called recursive procedure. So the program will not continue
to run indefinitely.

2–17 A (CS/IT-Sem-3)Data Structure

5. A recursive procedure must have the following two properties :

a. There must be certain criteria, called base criteria, for which the
procedure does not call itself.

b. Each time the procedure does call itself, it must be closer to the
criteria.

6. A recursive procedure with these two properties is said to be well-
defined.

7. Similarly, a function is said to be recursively defined if the function
definition refers to itself.

8. Again, in order for the definition not to be circular, it must have the
following two properties :

a. There must be certain arguments, called base values, for which the
function does not refer to itself.

b. Each time the function does refer to itself, the argument of the
function must be closer to a base value.

Que 2.17. What is recursion ? Write a recursive program to find

sum of digits of the given number. Also, calculate the time

complexity. AKTU 2016-17, Marks 10

Answer
Recursion : Refer Q. 2.16, Page 2–16A, Unit-2.
Program :

#include<stdio.h>
#include<conio.h>
int sum(int n)
{

if(n < 10)
return(n);
else
return(n % 10 + sum (n / 10));

}
main()
{
int s,n;
printf(“\nEnter any number:”);
scanf(“%d”,&n);
s = sum(n);
printf(“\nSum of digits = %d”, s);
getch();
return 0;
}

2–18 A (CS/IT-Sem-3) Stacks and Queues

Time complexity :
i. Assume that n is a 10 digit number. The function is called 10 times as the

problem is reduced by a factor of 10 each time the program recurse.

ii. So, we can conclude that time taken by program is linear in terms of the
length of the digit of the input number n.

iii. So, time complexity is,

T(n) = O(length of digit of (n)) where n is the number whose sum of
individual digit is to be found.

Que 2.18. Explain all types of recursion with example.

Answer
Types of recursion :
a. Direct recursion : A function is directly recursive if it contains an

explicit call to itself.
For example :
int foo (int x)
{ if (x <= 0)
return x;
return foo (x – 1);
}

b. Indirect recursion: A function is indirectly recursive if it contains a
call to another function.
For example :
int foo (int x)
{ if (x <= 0)
return x;
return bar (x) ;
}
int bar (int y)
{ return foo (y – 1) ;
}

c. Tail recursion :
1. Tail recursion (or tail-end recursion) is a special case of recursion in

which the last operation of the function, the tail call is a recursive
call. Such recursions can be easily transformed to iterations.

2. Replacing recursion with iteration, manually or automatically, can
drastically decrease the amount of stack space used and improve
efficiency.

3. Converting a call to a branch or jump in such a case is called a tail
call optimization.

For example :
Consider this recursive definition of the factorial function in C :
factorial (n)

2–19 A (CS/IT-Sem-3)Data Structure

{
if(n == 0)
return 1;
return n * factorial (n – 1);
}

4. This definition is tail recursive since the recursive call to factorial is
not the last thing in the function (its result has to be multiplied by
n).

factorial (n, accumulator)
{

if(n == 0)
return accumulator;

return factorial (n – 1, n * accumulator);
}
factorial (n)
{

return factorial (n – 1) ;
}

d. Linear and tree recursive :
1. A recursive function is said to be linearly recursive when no pending

operation involves another recursive call to the function.

2. A recursive function is said to be tree recursive (or non-linearly
recursive) when the pending operation does involve another
recursive call to the function.

3. The Fibonacci function fib provides a classic example of tree
recursion. The Fibonacci numbers can be defined by the rule :

int fib (int n)
{ /* n >= 0 */
if (n == 0)
return 0;
if (n == 1)
return 1;
return fib (n – 1) + fib (n – 2) ;
}

The pending operation for the recursive call is another call to fib. Therefore,
fib is tree recursive.

Que 2.19. Explain Tower of Hanoi.

Answer
1. Suppose three pegs, labelled A, B and C is given, and suppose on peg A,

there are finite number of n disks with decreasing size.

2. The object of the game is to move the disks from peg A to peg C using
peg B as an auxiliary.

2–20 A (CS/IT-Sem-3) Stacks and Queues

3. The rule of game is follows :

a. Only one disk may be moved at a time. Specifically only the top disk
on any peg may be moved to any other peg.

b. At no time, can a larger disk be placed on a smaller disk.

A B C

Fig. 2.19.1.

The solution to the Tower of Hanoi problem for n = 3.

Fig. 2.19.2.
(6) B C  (7) A C

A B C A B C

A B C A B C A B C

A B C A B C A B C

Initial (1) A C (2) A B

(3) C B (4) A C (5) B A

Total number of steps to solve Tower of Hanoi problem of n disk
= 2n – 1 = 23 – 1 = 7

Que 2.20. What is Tower of Hanoi problem ? Write the recursive

code in C language for the problem. AKTU 2014-15, Marks 05

Answer
Tower of Hanoi problem : Refer Q. 2.19, Page 2–19A, Unit-2.

Recursive code for Tower of Hanoi :
#include<stdio.h>
#include<conio.h>
void main()

2–21 A (CS/IT-Sem-3)Data Structure

{

clrscr();

int n;

char A = ‘A’, B = ‘B’, C = ‘C’;

void hanoi (int, char, char, char);

printf(“Enter number of disks :”);

scanf(“%d”, &n);

printf(“\n\n Tower of Hanoi problem with %d disks\n”, n);

printf(“Sequence is : \n”);

hanoi (n, A, B, C);

printf(“\n”);

getch();

}

void hanoi (int n, char A, char B, char C)

{

If(n ! = 0)

{

hanoi (n – 1, A, C, B);

printf(“Move disk %d from %c to %c\n , n, A, C,”);

hanoi (n – 1, B, A, C);

}

}

Que 2.21. Write a recursive algorithm for solving the problem of

Tower of Hanoi and also explain its complexity. Illustrate the
solution for four disks and three pegs.

OR
Explain Tower of Hanoi problem and write a recursive algorithm

to solve it. AKTU 2018-19, Marks 07
OR

Write an algorithm for finding solution to the Tower
of Hanoi problem. Explain the working of your algorithm (with 4

disks) with diagrams. AKTU 2015-16, Marks 15

Answer
Tower of Hanoi problem : Refer Q. 2.19, Page 2–19A, Unit-2.

Algorithm :
TOWER (N, BEG, AUX, END)

2–22 A (CS/IT-Sem-3) Stacks and Queues

This procedure gives a recursive solution to the Tower of Hanoi problem for
N disks.

1. If N = 1, then :

a. Write: BEG  END

b. Return

[End of If structure]

2. [Move N – 1 disk from peg BEG to peg AUX]

Call TOWER (N – 1, BEG, END, AUX)

3. Write: BEG  END

4. [Move N – 1 disk from peg AUX to peg END]

Call TOWER (N – 1, AUX, BEG, END)

5. Return

Time complexity :
Let the time required for n disks is T(n).

There are 2 recursive calls for n – 1 disks and one constant time operation
to move a disk from ‘from’ peg to ‘to’ peg. Let it be kl.

Therefore,

T(n) = 2 T(n – 1) + k1

T(0) = k2 , a constant.

T(1) = 2k2 + k1

T(2) = 4k2 + 2k1+ k1

T(2) = 8k2 + 4k1+ 2k1 + k1

Coefficient of k1 = 2n

Coefficient of k2 = 2n – 1

Time complexity is O(2n) or O(an) where a is a constant greater than 1.

So, it has exponential time complexity.

Space complexity :
Space for parameter for each call is independent of n i.e., constant. Let it be
k.

When we do the 2nd recursive call 1st recursive call is over. So, we can reuse
the space of 1st call for 2nd call. Hence,

T(n) = T(n – 1) + k

T(0) = k

T(1) = 2k

T(2) = 3k

T(3) = 4k

So, the space complexity is O(n).

2–23 A (CS/IT-Sem-3)Data Structure

Numerical : Fig. 2.21.1 contains a schematic illustration of the recursive
solution for TOWER (4, A, B, C) (4 disks, 3 pegs)

TOWER (4, A, B, C)

TOWER (3, B, A, C)

TOWER (2, A, B, C)

TOWER (2, B, C, A)

TOWER (2, C, A, B)

TOWER (2, A, B, C)

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (3, A, C, B)

A C A C 

B A B A 

C B C B 

A C.................... A C 

A B... A B 

 A C ... A C 

B C .. B C 

Fig. 2.21.1. Recursive solution to Tower of Hanoi problem for n = 4.
Observe that the recursive solution for n = 4 disks consist of the following
15 moves :
A B A  C B  C A  B C A C  B A  B A  C B  C
B  A C  A B  C A  B A  C B  C

Que 2.22. Discuss the principle of recursion.

Answer
1. Recursion is implemented through the use of function.

2. A function that contains a function call to itself or a function call to a
second function which eventually calls the first function, is known as a
recursive function.

3. Two important conditions must be satisfied by any recursive function :

a. Each time a function calls itself it must be closer, in some sense to
a solution.

b. There must be a discussion criterion for stopping the process or
computation.

2–24 A (CS/IT-Sem-3) Stacks and Queues

Que 2.23. How recursion can be removed ?

Answer
There are two ways to remove recursion :

1. By iteration : All tail recursion function can be removed by iterative
method.

2. By using stack : All non-tail recursion method can be removed by
using stack.

Que 2.24. Define the recursion. Write a recursive and

non-recursive program to calculate the factorial of the given

number. AKTU 2017-18, Marks 07

Answer

Recursion : Refer Q. 2.16, Page 2–16A, Unit-2.

Program :
#include <stdio.h>
#include <conio.h>
void main()
{
int n, a, b;
clrscr();
printf(“Enter any number\n”);
scanf(“%d”, &n);
a = recfactorial(n);
printf(“The factorial of a given number using recursion is %d
\n”, a);
b = nonrecfactorial(n);
printf(“The factorial of a given number using nonrecursion is
%d ”, b);
getch();
}
int recfactorial(int x)
{
int f;
if(x == 0)
{
return(1);
}
else
{
f = x * recfactorial(x – 1);

2–25 A (CS/IT-Sem-3)Data Structure

return(f);
}
}
int nonrecfactorial(int x)
{
int i, f = 1;
for(i = 1; i <= x; i++)
{
f = f * i;
}
return(f);
}

Queues : Operation on Queue : Create, Add, Delete, Full and Empty.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.25. Discuss queue.

Answer
1. Queue is a linear list which has two ends, one for insertion of elements

and other for deletion of elements.

2. The first end is called ‘Rear’ and the later is called ‘Front’.

3. Elements are inserted from Rear end and deleted from Front end.

4. Queues are called First In First Out (FIFO) list, since the first element in
a queue will be the first element out of the queue.

5. The two basic operations that are possible in a queue are :

a. Insert (or add) an element to the queue (push) or Enqueue.

b. Delete (or remove) an element from a queue (pop) or Dequeue.

Example :
Suppose we have an empty queue, with 5 memory cells such as :

0 1 2 3 4

Front = – 1

Rear = – 1 i.e., Empty queue.

2–26 A (CS/IT-Sem-3) Stacks and Queues

Que 2.26. Write the procedures for insertion, deletion and

traversal of a queue. AKTU 2014-15, Marks 05
OR

Discuss various algorithms for various operation of queue.

Answer
1. Insertion :

Insert in Q (Queue, Max, Front, Rear, Element)
Let Queue is an array, Max is the maximum index of array, Front and
Rear to hold the index of first and last element of Queue respectively
and Element is value to be inserted.
Step 1 : If Front = 1 and Rear = Max or if Front = Rear + 1

Display “Overflow” and Return
Step 2 : If Front = NULL [Queue is empty]

Set Front = 1 and Rear = 1
else if Rear = N, then
Set Rear = 1
else
Set Rear = Rear + 1

[End of if Structure]
Step 3 : Set Queue [Rear] = Element [This is new element]
Step 4 : End

2. Deletion :
Delete from Q (Queue, Max, Front, Rear, Item)
Step 1 : If Front = NULL [Queue is empty]

display “Underflow” and Return
Step 2 : Set Item = Queue [Front]
Step 3 : If Front = Rear [Only one element]

Set Front = Rear and Rear = NULL
Else if
Front = N, then
Set Front = 1
Else
Set Front = Front + 1
[End if structure]

Step 4 : End
3. Traversal of a queue : Here queue has Front End FE and Rear End

RE. This algorithm traverse queue applying an operation PROCESS to
each element of queue :
Step 1 : [Initialize counter] Set K = FE
Step 2 : Repeat step 3 and 4 while K  RE
Step 3 : [Visit element] Apply PROCESS to queue [K]
Step 4 : [Increase counter] Set K = K + 1

[End of step 2 loop]
Step 5 : Exit

2–27 A (CS/IT-Sem-3)Data Structure

Circular Queue, Array and Linked Implementation of Queue in C.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.27. What is circular queue ? Write a C code to insert an

element in circular queue. Write all the condition for overflow.

AKTU 2014-15, Marks 05

Answer
1. A circular queue is one in which the insertion of a new element is done

at the very first location of the queue if the last location at the queue is
full.

2. In circular queue, the elements Q[0], Q[1], Q[2] ... Q[n – 1] is represented
in a circular fashion.
For example : Suppose Q is a queue array of six elements.

3. PUSH and POP operation can be performed on circular queue.
Fig. 2.27.1 will illustrate the same.

Q[5] Q[0]

Q[1]

Q[2]Q[3]

Q[4]

Front

Rear

67

Q[5] Q[0]

Q[1]

Q[2]Q[3]

Q[4]

FrontRear

6742

18

7

42

(a) A circular queue after
inserting 18, 7 , 42, 67.

(b) A circular queue after
popping 18, 7.Fig. 2.27.1.

C code to insert an element in circular queue :
void insert ()
{

int item;
if((front == 0 && rear == Max – 1)||((front == rear + 1))
{
printf(“Queue is overflow\n”);
return;

2–28 A (CS/IT-Sem-3) Stacks and Queues

}
if(front == –1) / *If queue is empty*/
{
front = 0;
rear = 0;
}
else
if(rear == Max – 1) /*rear is at last position of queue*/
rear = 0;
else
rear = rear + 1;
printf(“Input the element for insertion :”);
scanf(“%d”, &item);
cqueue [rear] = item;
}

Conditions for overflow : There are two conditions :
1. (front = 0) and (rear = Max – 1)
2. front = rear + 1
If any of these two conditions is satisfied, it means that overflow occurs.

Que 2.28. Write an algorithm to insert and delete an item from the

circular linked list.

Answer
Insertion in circular linked list :
i. At the beginning :

1. If AVAIL = NULL then linked list is OVERFLOW and STOP
2. PTR  AVAIL

AVAIL  LINK (AVAIL)
Read INFO (PTR)

3. CPT  FIRST
4. Repeat step 5 while LINK (CPT) != FIRST
5. CPT  LINK (CPT)
6. LINK (PTR)  FIRST

FIRST  PTR
LINK (CPT)  FIRST

7. STOP
ii. At the end

1. If AVAIL = NULL then linked list is OVERFLOW and STOP
2. PTR  AVAIL

AVAIL  LINK (AVAIL)
Read INFO (PTR)

3. CPT  FIRST
4. Repeat step 5 while LINK (CPT) != FIRST
5. CPT  LINK (CPT)
6. LINK (CPT)  PTR

2–29 A (CS/IT-Sem-3)Data Structure

7. LINK (PTR)  FIRST
8. STOP

Deletion in circular linked list :
i. From the beginning

1. If FIRST = NULL then linked list is UNDERFLOW and STOP
2. CPT  FIRST
3. Repeat step 4 while LINK (CPT) != FIRST
4. CPT  LINK (CPT)
5. PTR  FIRST

FIRST  LINK (PTR)
LINK (CPT)  FIRST

6. LINK (PRT)  AVAIL
AVAIL  PTR

7. STOP
ii. From the end

1. If FIRST = NULL then linked list is UNDERFLOW and STOP.
2. CPT  FIRST
3. Repeat step 4 while LINK (CPT) != FIRST
4. PTR  CPT

CPT  LINK (CPT)
5. LINK (PTR)  FIRST
6. LINK (CPT)  AVAIL

AVAIL  CPT
7. STOP

Que 2.29. Write a C program to implement the array

representation of circular queue. AKTU 2016-17, Marks 10

Answer
#include<stdio.h>
#include<conio.h>
#include<process.h>
#define MAX 10

typedef struct {
int front, rear ;
int elements [MAX];
} queue;

void createqueue (queue *aq) {
aq -> front = aq -> rear = – 1

}
int isempty (queue *aq)
{

if(aq -> front = = – 1)
return 1;

else
return 0;

2–30 A (CS/IT-Sem-3) Stacks and Queues

}
int isfull (queue *aq) {

if(((aq -> front = = 0) && (aq -> rear = = MAX – 1))
||(aq - > front == aq - > rear + 1))

return 1;
else

return 0;
}
void insert (queue *aq, int value) {

if(aq -> front = = – 1)
aq -> front = aq -> rear = 0;

else
aq -> rear = (aq -> rear + 1) % MAX;
aq -> element [aq -> rear] = value;

}
int delete (queue *aq) {

int temp;
temp = aq -> element [aq -> front];
if(aq -> front = = aq ->rear)
aq -> front = aq -> rear = – 1;
else
aq -> front = (aq -> front + 1) % MAX ;
return temp;
}

void main()
{

int ch, elmt;
queue q;
create queue (&q);
while (1) {
printf(“1. Insertion \n”);
printf(“2. Deletion \n”);
printf(“3. Exit \n”);
printf(“Enter your choice”);
scanf(“%d”,&ch) ; .

switch (ch)
{

case 1:
if(isfull (&q))
{
printf (“queue is full”);
getch();
}
else
{
printf(“Enter value”);

2–31 A (CS/IT-Sem-3)Data Structure

scanf(“%d”, &elmt) ;
insert (&q, elmt) ;
}
break;
case 2: if (isempty (&q))
{
printf(“queue empty”);
getch();
}
else
{
printf(“Value deleted is % d”, delete (&q));
getch();
}
break;
case 3:
exit(1);

}
} }

Que 2.30. Write a C program to implement queue using linked list.

Answer
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#include<stdlib.h>

struct node
{

int info;
struct node *link;

};
struct node *front, *rear;
void main()

{
clrscr();
void insert(), delete(), display();
int ch;
while (1)

{
printf(“1. Insert\n”);
printf(“2. Delete\n”);
printf(“3.Display\n”);
printf(“4. Exit\n”);
printf(“Enter your choice :”);
scanf(“%d”, &ch);

2–32 A (CS/IT-Sem-3) Stacks and Queues

switch(ch)
{

case 1 :
insert();
break;

case 2 :
delete();
break;

case 3 :
display();
break;

case 4 :
exit(0);
default;

printf(“Please enter correct choice \n”);
}

}
getch();

}
void insert()

{
struct node *ptr;
ptr = (struct node*)malloc(sizeof (struct node));
int item;
printf(“Input the element for inserting :\n”);
scanf(“%d”,&item);
prt-> info = item;
ptr->link = NULL;
if (front == NULL) /* queue is empty*/
front = ptr;
else

rear->link = ptr;

rear = ptr;

}

void delete()

{

struct node *ptr;

if (front == NULL)

{

printf(“Queue is underflow \n”) ;

return;

}

if (front == rear) {

2–33 A (CS/IT-Sem-3)Data Structure

free(front);

rear = NULL;

}

else

{

ptr = front;

front = ptr->link;

free (ptr);

}

}

void display()

{

struct node *ptr;

ptr = front;

if (front == NULL)

printf(“Queue is empty\n”);

else

{

printf(“\n Elements in the Queue are :\n”);

while(ptr != NULL)
{

printf(“%d\n”, ptr->info);
ptr = ptr->link;

}
printf(“\n”);

}
}

Que 2.31. Explain how a circular queue can be implemented using

arrays. Write all functions for circular queue operations.

AKTU 2018-19, Marks 07

Answer
Implementation of circular queue using array :
Refer Q. 2.29, Page 2–29A, Unit-2.
Function to create circular queue :

void Queue :: enQueue(int value)
{

2–34 A (CS/IT-Sem-3) Stacks and Queues

if ((front == 0 && rear == size – 1) ||(rear == (front – 1)%(size – 1)))
{
printf(“\nQueue is Full”);
return;
}
else if (front == –1) /* Insert First Element */
{
front = rear = 0;
arr[rear] = value;
}
else if (rear == size–1 && front != 0)
{
rear = 0;
arr[rear] = value;
}
else
{
rear++;
arr[rear] = value;
}
}

Function to delete element from circular queue :
int Queue :: deQueue()
{
if (front == –1)
{
printf(“\nQueue is Empty”);
return INT_MIN;
}
int data = arr[front];
arr[front] = – 1;
if (front == rear)
{
front = – 1;
rear = – 1;
}
else if (front == size – 1)
front = 0;
else
front++;
return data;
}

Dequeue and Priority Queue.

2–35 A (CS/IT-Sem-3)Data Structure

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.32. Explain dequeue with its types.

Answer
1. In a dequeue, both insertion and deletion operations are performed at

either end of the queues. That is, we can insert an element from the
rear end or the front end. Also deletion is possible from either end.

Front Rear

Insertion
Deletion

Insertion
Deletion

Fig. 2.32.1. Structure of a dequeue.

2. This dequeue can be used both as a stack and as a queue.

3. There are various ways by which this dequeue can be represented. The
most common ways of representing this type of dequeue are :

a. Using a doubly linked list
b. Using a circular array

Types of dequeue :
1. Input-restricted dequeue : In input-restricted dequeue, element can

be added at only one end but we can delete the element from both ends.

2. Output-restricted dequeue : An output-restricted dequeue is a
dequeue where deletions take place at only one end but allows insertion
at both ends.

Front Rear

Insertion
Deletion

Deletion

Fig. 2.32.2.

(a) Input-restricted dequeue

Front Rear

Insertion

(b) Output-restricted dequeue

Insertion
Deletion

2–36 A (CS/IT-Sem-3) Stacks and Queues

Que 2.33. What do you mean by priority queue ? Describe its

applications.

Answer
1. A priority queue is a data structure in which each element has been

assigned a value called the priority of the element and an element can
be inserted or deleted not only at the ends but at any position on the
queue.

2. A priority queue is a collection of elements such that each element has been
assigned an explicit or implicit priority and such that the order in which
elements are deleted and processed comes from the following rules :
a. An element of higher priority is processed before any element of

lower priority.
b. Two elements with the same priority are processed to the order in

which they were inserted to the queue.
Types of priority queues are :
1. Ascending priority queue : In ascending priority queue, elements

can be inserted in an order. But, while deleting elements from the
queue, always a small element to be deleted first.

2. Descending priority queue : In descending priority queue, elements
are inserted in any order but while deleting elements from the queue
always a largest element to be deleted first.

Applications of priority queue :
1. The typical example of priority queue is scheduling the jobs in operating

system. Typically operating system allocates priority to jobs. The jobs
are placed in the queue and position 1 of the job in priority queue
determines their priority.

2. In network communication, to manage limited bandwidth for
transmission, the priority queue is used.

3. In simulation modelling, to manage the discrete events the priority
queue is used.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. Write a C function for array implementation of stack. Write
all primitive operations.

Ans. Refer Q. 2.4.

2–37 A (CS/IT-Sem-3)Data Structure

Q. 2. Write a C function for linked list implementation of stack.
Write all the primitive operations.

Ans. Refer Q. 2.5.

Q. 3. What is stack ? Implement stack with singly linked list.
Ans. Refer Q. 2.6.

Q. 4. Write a function in C language to reverse a string using
stack.

Ans. Refer Q. 2.7.

Q. 5. Convert following infix expression into postfix expression
A + (B * C + D)/E.

Ans. Refer Q. 2.10.

Q. 6. Consider the following infix expression and convert into
reverse polish notation using stack. A + (B * C – (D/E ^ F) *
H)

Ans. Refer Q. 2.11.

Q. 7. Solve the following :
a. ((A – (B + C) * D) / (E + F)) [Infix to postfix]
b. (A + B) + *C – (D – E)  F [Infix to prefix]
c. 7 5 2 + * 4 1 5 – / – [Evaluate the given postfix expression]

Ans. Refer Q. 2.14.

Q. 8. What is recursion ? Write a recursive program to find sum
of digits of the given number. Also, calculate the time
complexity.

Ans. Refer Q. 2.17.

Q. 9. What is Tower of Hanoi problem ? Write the recursive code
in C language for the problem.

Ans. Refer Q. 2.20.

Q. 10. Explain Tower of Hanoi problem and write a recursive
algorithm to solve it.

Ans. Refer Q. 2.21.

Q. 11. Define the recursion. Write a recursive and
non-recursive program to calculate the factorial of the given
number.

Ans. Refer Q. 2.24.

Q. 12. Write the procedures for insertion, deletion and traversal
of a queue.

Ans. Refer Q. 2.26.

2–38 A (CS/IT-Sem-3) Stacks and Queues

Q. 13. What is circular queue ? Write a C code to insert an element
in circular queue. Write all the condition for overflow.

Ans. Refer Q. 2.27.

Q. 14. Write a C program to implement the array representation
of circular queue.

Ans. Refer Q. 2.29.

Q. 15. Explain how a circular queue can be implemented using
arrays. Write all functions for circular queue operations.

Ans. Refer Q. 2.31.



3–1 A (CS/IT-Sem-3)Data Structure

Searching and
Sorting

3
CONTENTS

Part-1 : Searching : Concept of 3–2A to 3–4A
Searching, Sequential
Search, Index Sequential
Search, Binary Search

Part-2 : Concept of Hashing and 3–4A to 3–9A
Collision Resolution
Techniques used in Hashing

Part-3 : Sorting : Insertion Sort, 3–9A to 3–11A
Selection Sort, Bubble Sort

Part-4 : Quick Sort ... 3–11A to 3–18A

Part-5 : Merge Sort .. 3–18A to 3–21A

Part-6 : Heap Sort and Radix Sort 3–21A to 3–23A

3–2 A (CS/IT-Sem-3) Searching and Sorting

Searching : Concept of Searching, Sequential Search, Index
Sequential Search, Binary Search.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.1. What do you mean by searching ? Explain.

Answer
1. Searching is the process of finding the location of given element in the

linear array.
2. The search is said to be successful if the given element is found, i.e., the

element does exists in the array; otherwise unsuccessful.
3. There are two searching techniques :

a. Linear search (sequential) b. Binary search
4. The algorithm which we choose depends on organization of the array

elements.
5. If the elements are in random order, then we have to use linear search

technique, and if the array elements are sorted, then it is preferable to
use binary search.

Que 3.2. Write a short note on sequential search and index

sequential search.

Answer
Sequential search :
1. In sequential (or linear) search, each element of an array is read one-

by-one sequentially and it is compared with the desired element. A
search will be unsuccessful if all the elements are read and the desired
element is found.

2. Linear search is the least efficient search technique among other search
techniques.

3. It is used when the records are stored without considering the order or
when the storage medium lacks the direct access facility.

4. It is the simplest way for finding an element in a list.
5. It searches the elements sequentially in a list, no matter whether list is

sorted or unsorted.
a. In case of sorted list in ascending order, the search is started from

1st element and continued until desired element is found or the
element whose value is greater than the value being searched.

3–3 A (CS/IT-Sem-3)Data Structure

b. In case of sorted list in descending order, the search is started from
1st element and continued until the desired element is found or the
element whose value is smaller than the value being searched.

c. If the list is unsorted searching started from 1st location and
continued until the element is found or the end of the list is reached.

Index sequential search :
1. In index sequential search, an index file is created, that contains some

specific group or division of required record, once an index is obtained,
then the partial searching of element is done which is located in a
specified group.

2. In indexed sequential search, a sorted index is set aside in addition to the
array.

3. Each element in the index points to a block of elements in the array or
another expanded index.

4. First the index is searched that guides the search in the array.
5. Indexed sequential search does the indexing multiple times like creating

the index of an index.
6. When the user makes a request for specific records it will find that index

group first where that specific record is recorded.

Que 3.3. Write down algorithm for linear/sequential search

technique. Give its analysis.

Answer
LINEAR(DATA, N, ITEM, LOC)
Here DATA is a linear array with N elements, and ITEM is a given item of
information. This algorithm finds the location LOC of ITEM in DATA, or sets
LOC := 0 if the search is unsuccessful.
1. [Insert ITEM at the end of DATA] Set DATA[N + 1] := ITEM
2. [Initialize counter] Set LOC := 1
3. [Search for ITEM]

Repeat while DATA[LOC]  ITEM
Set LOC := LOC + 1

[End of loop]
4. [Successful?] If LOC = N + 1, then : Set LOC := 0
5. Exit
Analysis of linear search :
Best case : Element occur at first position. Time complexity is O(1).
Worst case : Element occur at last position. Time complexity is O(n).

Que 3.4. Write down the algorithm of binary search technique.

Write down the complexity of algorithm.

Answer
Binary search (A, n, item, loc)
Let A is an array of ‘n’ number of items, item is value to be searched.

3–4 A (CS/IT-Sem-3) Searching and Sorting

1. Set : beg = 0, Set : end = n – 1, Set : mid = (beg + end) / 2
2. While ((beg  end) and (a [mid] != item))
3. If (item < a[mid])

then Set : end = mid – 1
else
Set : beg = mid + 1
endif

4. Set : mid = (beg + end) / 2
endwhile

5. If (beg > end) then
Set : loc = – 1 / / element not found
else
Set : loc = mid
endif

6. Exit
Analysis of binary search :
The complexity of binary search is O(log2 n).

Que 3.5. What is difference between sequential (linear) search

and binary search technique ?

Answer

S. No. Sequential (linear) search Binary search

1. No elementary condition i.e., Elementary condition i.e.,
array can be sorted or unsorted. array should be sorted.

2. It takes long time to search an It takes less time to search an
element. element.

3. Complexity is O(n). Complexity is O(log2 n).

4. It searches data linearly. It is based on divide and
conquer method.

Concept of Hashing and Collision Resolution Techniques used
in Hashing.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.6. What do you mean by hashing ?

3–5 A (CS/IT-Sem-3)Data Structure

Answer
1. Hashing is a technique that is used to uniquely identify a specific object

from a group of similar objects.
2. Hashing is the transformation of a string of characters into a usually

shorter fixed-length value or key that represents the original string.
3. In hashing, large keys are converted into small keys by using hash

functions.
4. The values are then stored in a data structure called hash table.
5. The task of hashing is to distribute entries (key/value pairs) uniformly

across an array.
6. Each element is assigned a key (converted key). By using that key we

can access the element in O(1) time.
7. Using the key, the algorithm (hash function) computes an index that

suggests where an entry can be found or inserted.
8. Hashing is used to index and retrieve items in a database because it is

faster to find the item using the shorter hashed key than to find it
using the original value.

9. The element is stored in the hash table where it can be quickly retrieved
using hashed key which is defined by

Hash Key = Key Value % Number of Slots in the Table

Que 3.7. Discuss types of hash functions.

Answer
Types of hash functions :
a. Division method :

1. Choose a number m larger than the number n of key in K. (The
number m is usually chosen to be a prime number or a number
without small divisors, since this frequently minimizes the number
of collisions.)

2. The hash function H is defined by :
H(k) = k (mod m) or H(k) = k (mod m) + 1

3. Here k (mod m) denotes the remainder when k is divided by m.
4. The second formula is used when we want the hash addresses to

range from 1 to m rather than from 0 to m – 1.
b. Midsquare method :

1. The key k is squared.
2. The hash function H is defined by : H(k) = l

where l is obtained by deleting digits from both end of k2.
3. We emphasize that the same positions of k2 must be used for all of

the keys.
c. Folding method :

1. The key k is partitioned into a number of parts, k1, , kr, where
each part, except possibly the last, has the same number of digits as
the required address.

3–6 A (CS/IT-Sem-3) Searching and Sorting

2. Then the parts are added together, ignoring the last carry i.e.,
H(k) = k1 + k2 + + kr

where the leading-digit carries, if any, are ignored.
4. Now truncate the address upto the digit based on the size of hash table.

Que 3.8. What is collision ? Discuss collision resolution

techniques.
OR

Write a short note on hashing techniques.

AKTU 2017-18, Marks 3.5

Answer
Collision :
1. Collision is a situation which occur when we want to add a new record R with

key k to our file F, but the memory location address H(k) is already occupied.
2. A collision occurs when more than one keys map to same hash value in

the hash table.
Collision resolution technique :
Hashing with open addressing :
1. In open addressing, all elements are stored in the hash table itself.
2. While searching for an element, we systematically examine table slots

until the desired element is found or it is clear that the element is not in
the table.

3. Thus, in open addressing, the load factor  can never exceed 1.
4. The process of examining the locations in the hash table is called probing.
5. Following are techniques of collision resolution by open addressing :

a. Linear probing :
i. Given an ordinary hash function h : U [0, 1,, m – 1], the

method of linear probing uses the hash function.
h (k, i) = (h (k) + i) mod m

where ‘m’ is the size of the hash table and h (k) = k mod m
(basic hash function).

b. Quadratic probing :
i. Suppose a record R with key k has the address H(k) = h then

instead of searching the locations with address h, h + 1,
h + 2,, we linearly search the locations with addresses
h, h + 1, h + 4, h + 9,, h + i2.

ii. Quadratic probing uses a hash function of the form
h (k, i) = (h (k) + c1i + c2i2) mod m

where (as in linear probing) h is an auxiliary hash function, c1
and c2  0 are auxiliary constants, and i = 0, 1,, m – 1.

c. Double hashing :
i. Double hashing is one of the best methods available for open

addressing because the permutations produced have many of
the characteristics of randomly chosen permutations.

3–7 A (CS/IT-Sem-3)Data Structure

ii. Double hashing uses a hash function of the form :
h(k, i) = (h1 (k) + ih2 (k)) mod m,

where h1 and h2 are auxiliary hash functions and m is the size
of the hash table.

Hashing with separate chaining :
1. This method maintains the chain of elements which have same hash

address.
2. We can take the hash table as an array of pointers.
3. Size of hash table can be number of records.
4. Here each pointer will point to one linked list and the elements which

have same hash address will be maintained in the linked list.
5. We can maintain the linked list in sorted order and each elements of

linked list will contain the whole record with key.
6. For inserting one element, first we have to get the hash value through

hash function which will map in the hash table, then that element will
be inserted in the linked list.

7. Searching a key is also same, first we will get the hash key value in hash
table through hash function, then we will search the element in
corresponding linked list.

8. Deletion of a key contains first search operation then same as delete
operation of linked list.

Que 3.9. What do you mean by hashing and collision ? Discuss

the advantages and disadvantages of hashing over other searching

techniques. AKTU 2014-15, Marks 10

Answer
Hashing : Refer Q. 3.6, Page 3–4A, Unit-3.
Collision : Refer Q. 3.8, Page 3–6A, Unit-3.
Advantages of hashing over other search techniques :
1. The main advantage of hash tables over other table data structures is

speed. This advantage is more apparent when the number of entries is
large (thousands or more).

2. Hash tables are particularly efficient when the maximum number of
entries can be predicted in advance, so that the bucket array can be
allocated once with the optimum size and never resized.

3. If the set of key-value pairs is fixed and known ahead of time (so insertions
and deletions are not allowed), one may reduce the average lookup cost
by a careful choice of the hash function, bucket table size, and internal
data structures.

Disadvantages of hashing over other search techniques :
1. Hash tables can be more difficult to implement than self-balancing binary

search trees. Choosing an effective hash function for a specific application
is more an art than a science. In open-addressed hash tables it is fairly
easy to create a poor hash function.

3–8 A (CS/IT-Sem-3) Searching and Sorting

2. The cost of a good hash function can be significantly higher than the
inner loop of the lookup algorithm for a sequential list or search tree.

3. Hash tables are not effective when the number of entries is very small.
For certain string processing applications, such as spell-checking, hash
tables may be less efficient than trees, finite automata, or arrays.

4. If each key is represented by a small enough number of bits, then,
instead of a hash table, one may use the key directly as the index into an
array of values.

Que 3.10. Write short notes on garbage collection.

AKTU 2017-18, Marks 3.5

AKTU 2014-15, Marks 05

Answer
1. When some memory space becomes reusable due to the deletion of a

node from a list or due to deletion of entire list from a program then we
want the space to be available for future use.

2. One method to do this is to immediately reinsert the space into the free-
storage list. This is implemented in the linked list.

3. This method may be too time consuming for the operating system of a
computer.

4. In another method, the operating system of a computer may periodically
collect all the deleted space onto the free storage list. This type of
technique is called garbage collection.

5. Garbage collection usually takes place in two steps. First the computer
runs through all lists, tagging those cells which are currently in use and
then the computer runs through the memory, collecting all untagged
space onto the free storage list.

6. The garbage collection may take place when there is only some
minimum amount of space or no space at all left in the free storage list
or when the CPU is idle and has time to do the collection.

Que 3.11. Write the conditions when collision occurs in hashing.

Describe any collision detection algorithm in brief.

Answer
Condition when collision occurs : Refer Q. 3.8, Page 3–6A, Unit-3.
Collision detection algorithm :
a. One of the collision detection algorithms is grid based algorithm.
b. In this algorithm, grids are space-filling.
c. Each cell or voxel (volume pixel) has a list of objects which intersects it.
d. The uniform grid is used to determine which objects are near to an

object by examining object-lists of the cells the object overlaps.
e. Intersections for a given object are found by going through the object

lists for all voxels containing the object, performing intersection tests
against objects on those lists.

3–9 A (CS/IT-Sem-3)Data Structure

f. A grid based collision detection algorithm then works as follows :
1. for i = 1 to n
2. vmin = voxel (min (bbox (object (i))))
3. vmax = voxel (max (bbox (object (i))))
4. for x = vminx

 to x = vmaxx
5. for y = vminy

 to y = vmaxy
6. for z = vminz

 to z = vmaxz
7. for j = 1 to n_objects (voxel (x, y, z))
8. if (not tested (object (i), object (j)))
9. intersect (object (i), object (j))

Sorting : Insertion Sort, Selection Sort, Bubble Sort.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.12. Write a short note on insertion sort.

AKTU 2014-15, Marks 05

Answer
1. In insertion sort, we pick up a particular value and then insert it at the

appropriate place in the sorted sublist, i.e., during kth iteration the element
a[k] is inserted in its proper place in the sorted sub-array a[1], a[2], a[3]
a[k – 1].

2. This task is accomplished by comparing a[k] with a[k – 1], a[k – 2],
a[k – 3] and so on until the first element a[j] such that a[j]  a[k] is found.

3. Then each of the elements a[k – 1], a[k – 2], a[j + 1] are moved one position up and
then element a[k] is inserted in [j + 1]st position in the array.
Insertion-Sort (A)
1. for j  2 to length[A]
2. do key  A[j] /*Insert A[j] into the sorted sequence A[1....j – 1].*/
3. i  j – 1
4. while i > 0 and A[i] > key
5. do A[i + 1]  A[i]
6. i  i – 1
7. A[i + 1]  key
Analysis of insertion sort :
Complexity of best case isO(n)
Complexity of average case is O(n2)
Complexity of worst case is O(n2)

3–10 A (CS/IT-Sem-3) Searching and Sorting

Que 3.13. Write a short note on selection sort.

Answer
1. In selection sort we repeatedly find the next largest (or smallest) element

in the array and move it to its final position in the sorted array.
2. We begin by selecting the largest element and moving it to the highest

index position.
3. We can do this by swapping the element at the highest index and the

largest element.
4. We then reduce the effective size of the array by one element and

repeat the process on the smaller sub-array.
5. The process stops when the effective size of the array becomes 1 (an

array of 1 element is already sorted).
Selection-Sort (A) :
1. n  length[A]
2. for j  1 to n – 1
3. smallest  j
4. for i  j + 1 to n
5. if A [i] < A[smallest]
6. then smallest  i
7. exchange(A[j], A[smallest])

Analysis of selection sort :
Complexity of best case is O(n2).
Complexity of average case is O(n2).
Complexity of worst case is O(n2).

Que 3.14. Discuss bubble sort.

Answer
1. Bubble sort is the simplest sorting algorithm that works by repeatedly

swapping the adjacent element if they are in wrong order.
2. Bubble sort procedure is based on following idea :

a. Suppose if the array contains n elements, then (n – 1) iterations are
required to sort this array.

b. The set of items in the array are scanned again and again and if any
two adjacent items are found to be out of order, they are reversed.

c. At the end of the first iteration, the lowest value is placed in the
first position.

d. At the end of the second iteration, the next lowest value is placed in
the second position and so on.

3. It is very efficient in large sorting jobs. For n data items, this method
requires n(n – 1)/2 comparisons.

Bubble-sort (A) :
1. for i  1 to length [A]
2. for j  length[A] down to i + 1

3–11 A (CS/IT-Sem-3)Data Structure

3. if A[j] < A[j – 1]
4. exchange(A[j], A[j – 1])
Analysis of bubble sort :
Complexity of best case is O(n).
Complexity of worst case is O(n2).
Complexity of average case is O(n2).

Quick Sort.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.15. Explain and give quick sort algorithm. Determine its

complexity.

Answer
1. Quick sort is a sorting algorithm that also uses the idea of divide and

conquer.
2. This algorithm finds the elements, called pivot, that partitions the array

into two halves in such a way that the elements in the left sub-array are
less than and the elements in the right sub-array are greater than the
partitioning element.

3. Then these two sub-arrays are sorted separately. This procedure is
recursive in nature with the base criteria.

Algorithm :
QUICK (A, N, BEG, END, LOC) :
1. [Initialize] Set LEFT := BEG, RIGHT := END and LOC := BEG
2. [Scan from RIGHT to LEFT]

a. Repeat while A [LOC]  A [RIGHT] and LOC  RIGHT
RIGHT := RIGHT – 1

[End of Loop]
b. If LOC = RIGHT, then : Return
c. If A [LOC] > A [RIGHT], then :

i. [Interchange A [LOC] and A [RIGHT]]
TEMP := A [LOC], A [LOC] := A [RIGHT],
A [RIGHT] = TEMP

ii. Set LOC := RIGHT
iii. Go to step 3

[End of if structure]
3. [Scan from LEFT to RIGHT]

a. Repeat while A [LEFT]  A [LOC] and LEFT  LOC :

3–12 A (CS/IT-Sem-3) Searching and Sorting

LEFT := LEFT + 1
[End of Loop]

b. If LOC = LEFT, then : Return,
c. If A [LEFT] > A [LOC], then

i. [Interchange A [LEFT] and A [LOC]]
TEMP := A [LOC], A [LOC] := A [LEFT],
A [LEFT] := TEMP

ii. Set LOC := LEFT
iii. Go to step 2
[End of if structure]

Quick sort : This algorithm sorts an array A with N elements.
1. [Initialize] Top := NULL
2. [PUSH boundary values of A onto stack when A has 2 or more elements]

If N > 1, then : TOP := TOP + 1, LOWER [1] := 1, UPPER [1] := N
3. Repeat steps 4 to 7 while TOP  NULL
4. [POP sublist from stacks]

Set BEG := LOWER [TOP], END := UPPER [TOP],
TOP = TOP – 1

5. Call Quick (A, N, BEG, END, LOC)
6. [PUSH left sublist onto stack when it has 2 or more elements]

If BEG < LOC – 1 then :
TOP := TOP + 1, LOWER [TOP] := BEG,
UPPER [TOP] = LOC – 1
[End of if structure]

7. [PUSH right sublist onto stack when it has 2 or more elements]
If LOC + 1 < END, then :
TOP := TOP + 1, LOWER [TOP] := LOC + 1
UPPER [TOP] := END
[END of if structure]
[END of step 3 loop]

8. Exit
Analysis of quick sort :
Complexity of worst case is O(n2).
Complexity of best case is O(n log n).
Complexity of average case is O(n log n).

Que 3.16. Write a recursive quick sort algorithm.

Answer
QUICK-SORT (A, p, r) :
1. If p < r then
2. q  PARTITION (A, p, r)
3. QUICK-SORT (A, p, q – 1)
4. QUICK-SORT (A, q + 1, r)
PARTITION (A, p, r) :
1. x  A[r]
2. i  p – 1

3–13 A (CS/IT-Sem-3)Data Structure

3. for j  p to r – 1
4. do if A[j]  x
5. then i  i + 1
6. exchange A[i]  A[j]
7. exchange A[i + 1]  A[r]
8. return i + 1

Que 3.17. What is quick sort ? Sort the given values using quick

sort; present all steps/iterations :

38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72 AKTU 2016-17, Marks 10

Answer
Quick sort : Refer Q. 3.15, Page 3–11A, Unit-3.
Numerical : A = 38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72. Choose the pivot
element to be the element in position (left + right)/2.
During the partitioning process,
1. Elements strictly to the left of position lo are less than or equivalent to

the pivot element (69).
2. Elements strictly to the right of position hi are greater than the pivot

element. When lo and hi cross, we are done. The final value of hi is the
position in which the partitioning element ends up.
Swap pivot element with leftmost element lo = left + 1; hi = right;

left

38 81 22 48 13 69

right

93 14 45 58 79 72

left+1

Move hi left and lo right as far as we can; then swap A[lo] and A[hi], and
move hi and lo one more position.

lo

69 81* 22 48 13 38 93 14 45 58* 79* 72*

hi hi hi 

Repeat above

69 58 22* 48* 13* 38* 93* 14 45* 81 79 72

hilololololo    

Repeat above until hi and lo cross; then hi is the final position of the
pivot element, so swap A[hi] and A[left].

81 7969 58 93* 7222 48 13 38 45 14**

lo lo
hi

Partitioning complete; return value of hi.

3–14 A (CS/IT-Sem-3) Searching and Sorting

14 58 22 48 13 38 45 69 93 81 79 72
hi

38 81 22 48 13 69 93 14 45 58 79 72

14 58 22 48 13 38 45 69 93 81 79 72

quicksort (, 1, 12)A

14 58 22 48 13 38 45 93 81 79 72

38 45 22 14 13 48 58 79 72 81 93

quicksort (, 1, 7)A quicksort (, 9, 12)A

14 45 22 38 13

14 13 22 38 45

quicksort (, 1, 5)A

79 72

72 79

quicksort (, 9, 10)A

14 13

13 14

quicksort (, 1, 2)A

38 45

38 45

quicksort (, 4, 5)A

Fig. 3.17.1.

Que 3.18. Write algorithm for quick sort. Trace your algorithm

on the following data to sort the list: 2, 13, 4, 21, 7, 56, 51, 85, 59, 1, 9, 10.
How the choice of pivot elements affects the efficiency of algorithm.

AKTU 2018-19, Marks 07

Answer
Quick sort algorithm : Refer Q. 3.16, Page 3–12A, Unit-3.
Numerical :

2 13 4 21 7 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Here p = 1, r = 12
x = A[12] = 10
i = p – 1 = 0
j = 1 + 0 = 1

Now, j = 1 and i = 0

3–15 A (CS/IT-Sem-3)Data Structure

A[1] = 2  10 (True)
then i = 0 + 1 = 1 and A[1]  A[1]
Now, j = 2 and i = 1

A[2] = 13 and 1310 (False)
So, j = 3 i = 1

A[3] = 4 and 4  10 (True)
then, i = 1 + 1 = 2 and A[2]  A[3]

i.e., 2 4 13 21 7 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Now, j = 4 and i = 2

A[4] = 21 and 21  10 (False)
j = 5 and i = 2

A[5] = 7  10 (True)
then, i = 2 + 1 = 3 and A[3]  A[5]

i.e., 2 4 7 21 13 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Now, j = 6 and i = 3

A[6] = 56 and 56 10
So, j = 7 and i = 3

A[7] = 51 and 51  10
j = 8 and i = 3

A[8] = 85 and 85  10
j = 9 and i = 3

A[9] = 59 and 59 10
j = 10 and i = 3

A[10] = 1  10 (True)
then, i = 3 + 1 = 4 and A[4]  A[10]

i.e., 2 4 7 1 13 56 51 85 59 21 9 10
1 2 3 4 5 6 7 8 9 10 11 12

j = 11 and i = 4
A[11] = 9  10 (True)

i = 4 + 1 = 5 and A[5]  A[11]

i.e., 2 4 7 1 9 56 51 85 59 21 13 10
1 2 3 4 5 6 7 8 9 10 11 12

A[6]  A[12]
Partitioning complete, return value of q :

2 4 7 1 9 10 56 51 85 59 21 13
1 2 3 4 5 6 7 8 9 10 11 12

3–16 A (CS/IT-Sem-3) Searching and Sorting

2, 4, 7, 1, 9, 10, 56, 51, 85, 59, 21, 13

Quicksort (, 1, 12)A

2, 4, 7, 1, 9
56, 51, 85, 59, 21, 13

Quicksort (, 1, 5)A Quicksort (, 7, 12)A

2, 4, 7, 1

1, 2, 4, 7

Quicksort (, 1, 4)A

2, 4, 7

2, 4

Quicksort (, 2, 4)A

Quicksort (, 2, 3)A

56, 51, 85, 59

56, 51

Quicksort (, 8, 11)A

Quicksort (, 8, 9)A

13, 56, 51, 85, 59, 21

56, 51, 85, 59, 21
Quicksort (, 7, 11)A

21, 56, 51, 85, 59

56, 51, 59, 85

51, 56

Choice of pivot element affects the efficiency of algorithm :
If we choose the last or first element of an array as pivot element then
it results in worst case scenario with O(n2) time complexity. If we choose
the median as pivot element then it divides the array into two halves
every time and results in best or average case scenario with time
complexity O(n log n). Thus, the efficiency of quick sort algorithm depends
on the choice of pivot element.

Que 3.19. Use quick sort algorithm to sort 15, 22, 30, 10, 15, 64, 1, 3,

9, 2. Is it a stable sorting algorithm? Justify.

AKTU 2017-18, Marks 07

Answer

Let A [] = 15 22 30 10 15 64 1 3 9 2
1 2 3 4 5 6 7 8 9 10

Here p = 1, r = 10

3–17 A (CS/IT-Sem-3)Data Structure

x = A[10] i.e., x = 2
i = p – 1 i.e., i = 0
j = 1 to 9

Now, j = 1 and i = 0
A[j] = A[1] = 15 and 15  2

So, j = 2 and i = 0
A[2] = 22  2 (False)

Now, j = 3 and i = 0
A[3] = 30  2 (False)

j = 4 and i = 0
A[4] = 10  2 (False)

j = 5
A[5] = 15  2 (False)

j = 6
A[6] = 64  2 (False)

j = 7
A[7] = 1 2 (True)

i = 0 + 1 = 1
A[1]  A[7]

i.e., 1 22 30 10 15 64 15 3 9 2
1 2 3 4 5 6 7 8 9 10

j = 8 and i = 1
A[8] = 3  2 (False)

j = 9 and i = 1
A[9] = 9  2 (False)

then, A[1 + 1]  A[r]
A[2]  A[10]

q  2

i.e., 1 2 30 10 15 64 15 3 9 22
1 2 3 4 5 6 7 8 9 10

QUICK SORT (A, 1, 1)

1 2
1 2

QUICK SORT (A, 3, 10)

30 10 15 64 15 3 9 22
3 4 5 6 7 8 9 10

Here p = 3, r = 10
x = A[10] = 22
i = 3 – 1 = 2
j = 3 to 9; j = 3 and i = 2

A[3] = 30  22 (False)
j = 4 and i = 2

A[4] = 10  22 (True)
i = 2 + 1 = 3 and A[3]  A[4]

3–18 A (CS/IT-Sem-3) Searching and Sorting

i.e., 10 30 15 64 15 3 9 22
3 4 5 6 7 8 9 10

j = 5 and i = 3
A[5] = 15  22 (True)

i = 3 + 1 = 4 and A[4]  A[5]

10 15 30 64 15 3 9 22
3 4 5 6 7 8 9 10

Similarly
j = 7, i = 4

A[7] = 15  22 (True)
i = 4 + 1 = 5 and A[5]  A[7]

i.e., 10 15 15 64 15 3 9 22
3 4 5 6 7 8 9 10

Similarly, we get another pivot element

10 15 15 3 9 22 64 30

Thus, this is a stable algorithm.

Merge Sort.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.20. Describe two way merge sort method. Explain the

complexities of merge sort method.

Answer
Merge sort :
a. Merge sort is a sorting algorithm that uses the idea of divide and conquer.
b. This algorithm divides the array into two halves, sorts them separately

and then merges them.
c. This procedure is recursive, with the base criteria that the number of

elements in the array is not more than 1.
MERGE_SORT (a, p, r) :
1. if p < r
2. then q (p + r)/2
3. MERGE-SORT (A, p, q)
4. MERGE-SORT (A, q + 1, r)

3–19 A (CS/IT-Sem-3)Data Structure

5. MERGE (A, p, q, r)
MERGE (A, p, q, r) :
1. n1 = q – p + 1
2. n2 = r – q
3. Create arrays L [1n1 + 1] and

R [1......n2 + 1]
4. for i = 1 to n1

do
L[i] = A [p + i – 1]

endfor
5. for j = 1 to n2

do
R[j] = A[q + j]

endfor
6. L[n1 + 1] = , R[n2 + 1] = 
7. i = 1, j = 1
8. for k = p to r

do
if L[i]  R[j]
then A[k]  L[i]

i = i + 1
else A[k] = R[j]

j = j + 1
endif
endfor

9. exit
Complexity of merge sort algorithm :
1. Let f(n) denote the number of comparisons needed to sort an

n-element array A using the merge sort algorithm.
2. The algorithm requires at most log n passes.
3. Moreover, each pass merges a total of n elements, and by the discussion

on the complexity of merging, each pass will require at most n
comparisons.

4. Accordingly, for both the worst case and average case,
f(n)  n log n

5. This algorithm has the same order as heap sort and the same average
order as quick sort.

6. The main drawback of merge sort is that it requires an auxiliary array
with n elements.

7. Each of the other sorting algorithms requires only a finite number of
extra locations, which is independent of n.

8. The results are summarized in the following table :

Algorithm Worst case Average case Extra memory

Merge sort n log n = O(n log n) n log n = O(n log n) O(n)

3–20 A (CS/IT-Sem-3) Searching and Sorting

Que 3.21. Write an algorithm for merge sorting. Using the

algorithm sort in ascending order : 10, 25, 16, 5, 35, 48, 8

AKTU 2014-15, Marks 10

Answer
Merge sorting : Refer Q. 3.20, Page 3–18A, Unit-3.
Numerical :
10, 25, 16, 5, 35, 48, 8
1. Divide first half 10, 25, 16, 5 35, 48, 8
2. Consider the first half : 10, 25, 16, 5 again divide into two sub- arrays

5, 10, 16, 25

10, 25 5, 16

10 , 25 16 , 5

3. Consider the second half : 35, 48, 5 again divide into two sub-arrays

8, 35, 48

35, 48 8

35 , 48 8

4. Merge these two sorted sub-arrays,

5, 8, 10, 16, 25, 35, 45

8, 35, 485, 10, 16, 25

This is the sorted array.

Que 3.22. How do you calculate the complexity of sorting

algorithms ? Also, write a recursive function in ‘C’ to implement

the merge sort on given set of integers. AKTU 2015-16, Marks 10

Answer
Complexity : Refer Q. 3.20, Page 3–18A, Unit-3.

3–21 A (CS/IT-Sem-3)Data Structure

Function :
void merge (int low, int mid, int high)
{
int temp [MAX] ;
int i = low;
int j = mid + 1;
int k = low;
while ((i <= mid) && (j <= high))
{
if (array [i] <= array [j])

temp [k++] = array [i++];
else

temp [k++] = array [j++] ;
}

while (i <= mid)
temp [k++] = array [i++];
while (j <= high)
temp [k++] = array [j++] ;
for (i = low; i <= high; i++)
array [i] = temp [i];
}
void merge_sort (int low, int high)
{
int mid;
if (low != high)
{
mid = (low + high) / 2;
merge_sort (low, mid);
merge_sort (mid + 1, high);
merge (low, mid, high);
}
}

Heap Sort and Radix Sort.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.23. Write a short note on heap sort.

AKTU 2014-15, Marks 05

3–22 A (CS/IT-Sem-3) Searching and Sorting

OR

Explain heap sort. AKTU 2017-18, Marks 3.5

Answer
1. Heap sort finds the largest element and puts it at the end of array, then

the second largest item is found and this process is repeated for all other
elements.

2. The general approach of heap sort is as follows :
a. From the given array, build the initial max heap.
b. Interchange the root (maximum) element with the last element.
c. Use repetitive downward operation from root node to rebuild the

heap of size one less than the starting.
d. Repeat step (a) and (b) until there are no more elements.

Analysis of heap sort :
Complexity of heap sort for all cases is O(n log2 n).
MAX-HEAPIFY (A, i) :
1. i  left [i]
2. r  right [i]
3. if l  heap-size [A] and A[l] > A[i]
4. then largest  l
5. else largest  i
6. if r  heap-size [A] and A[r] > A [largest]
7. then largest  r
8. if largest  i
9. then exchange A[i]  A[largest]
10. MAX-HEAPIFY [A, largest]
HEAP-SORT(A) :
1. BUILD-MAX-HEAP (A)
2. for i  length [A] down to 2
3. do exchange A[1]  A[i]
4. heap-size [A]  heap-size [A] – 1
5. MAX-HEAPIFY (A, 1)

Que 3.24. Write a short note on radix sort.

OR

Explain radix sort. AKTU 2017-18, Marks 3.5

Answer
1. Radix sort is a small method that many people uses when alphabetizing

a large list of names (here Radix is 26, 26 letters of alphabet).
2. Specifically, the list of name is first sorted according to the first letter of

each name, i.e., the names are arranged in 26 classes.
3. Intuitively, one might want to sort numbers on their most significant

digit.

3–23 A (CS/IT-Sem-3)Data Structure

4. But radix sort do counter-intuitively by sorting on the least significant
digits first.

5. On the first pass entire numbers sort on the least significant digit and
combine in an array.

6. Then on the second pass, the entire numbers are sorted again on the
second least-significant digits and combine in an array and so on.

7. Following example shows how radix sort operates on seven 3-digit
number.

Table 3.24.1.

Input 1st pass 2nd pass 3rd pass

329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839

8. In the above example, the first column is the input.
9. The remaining shows the list after successive sorts on increasingly

significant digits position.
10. The code for radix sort assumes that each element in the n-element

array A has d digits, where digit 1 is the lowest-order digit and d is the
highest-order digit.

RADIX_SORT (A, d)
for i  1 to d do
use a stable sort to sort array A on digit i
// counting sort will do the job

Analysis :
1. The running time depends on the table used as an intermediate sorting

algorithm.
2. When each digit is in the range 1 to k, and k is not too large,

COUNTING_SORT is the obvious choice.
3. In case of counting sort, each pass over n d-digit numbers takes

 (n + k) time.
4. There are d passes, so the total time for radix sort is (n + k) time. There

are d passes, so the total time for radix sort is (dn + kd). When d is
constant and k = (n), the radix sort runs in linear time.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

3–24 A (CS/IT-Sem-3) Searching and Sorting

Q. 1. What is collision ? Discuss collision resolution techniques.
Ans. Refer Q. 3.8.

Q. 2. What do you mean by hashing and collision ? Discuss the
advantages and disadvantages of hashing over other
searching techniques.

Ans. Refer Q. 3.9.

Q. 3. Write short notes on garbage collection.
Ans. Refer Q. 3.10.

Q. 4. Write a short note on insertion sort.
Ans. Refer Q. 3.12.

Q. 5. What is quick sort ? Sort the given values using quick sort;
present all steps/iterations :
38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72

Ans. Refer Q. 3.17.

Q. 6. Write algorithm for quick sort. Trace your algorithm on
the following data to sort the list: 2, 13, 4, 21, 7, 56, 51, 85, 59,
1, 9, 10. How the choice of pivot elements affects the efficiency
of algorithm.

Ans. Refer Q. 3.18.

Q. 7. Use quick sort algorithm to sort 15, 22, 30, 10, 15, 64, 1, 3, 9, 2.
Is it a stable sorting algorithm? Justify.

Ans. Refer Q. 3.19.

Q. 8. Write an algorithm for merge sorting. Using the algorithm
sort in ascending order : 10, 25, 16, 5, 35, 48, 8

Ans. Refer Q. 3.21.

Q. 9. How do you calculate the complexity of sorting algorithms ?
Also, write a recursive function in ‘C’ to implement the
merge sort on given set of integers.

Ans. Refer Q. 3.22.

Q. 10. Write a short note on heap sort.
Ans. Refer Q. 3.23.

Q. 11. Write a short note on radix sort.
Ans. Refer Q. 3.24.



Data Structure 4–1 A (CS/IT-Sem-3)

CONTENTS
Part-1 : Graphs : Terminology 4–2A to 4–4A

used with Graphs

Part-2 : Data Structure for Graph 4–4A to 4–7A
Representations : Adjacency
Matrices, Adjacency
List, Adjacency

Part-3 : Graph Traversal : 4–7A to 4–12A
Depth First Search and
Breadth First Search,
Connected Component

Part-4 : Spanning Tree, Minimum 4–12A to 4–28A
Cost Spanning Trees :
Prim’s and Kruskal’s Algorithm

Part-5 : Transitive Closure and 4–29A to 4–38A
Shortest Path Algorithm :
Warshall Algorithm
and Dijkstra Algorithm

Graphs
4

4–2 A (CS/IT-Sem-3) Graphs

Graphs : Terminology used with Graph.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.1. What is a graph ? Describe various types of graph. Briefly

explain few applications of graph.

Answer
1. A graph is a non-linear data structure consisting of nodes and edges.
2. A graph is a finite sets of vertices (or nodes) and set of edges which

connect a pair of nodes.
Types of graph :
1. Undirected graph :

a. If the pair of vertices is unordered then graph G is called an
undirected graph.

b. That means if there is an edge between v1 and v2 then it can be
represented as (v1, v2) or (v2, v1) also. It is shown in Fig. 4.1.1.

v1 v2

v3
v4

Fig. 4.1.1.
2. Directed graph :

a. If the pair of vertices is ordered then graph G is called directed
graph.

b. That is, a directed graph or digraph is a graph which has ordered
pair of vertices (v1, v2) where v1 is the tail and v2 is the head of the
edge.

c. If the graph is directed then the line segments of arcs have arrow
heads indicating the direction. It is shown in Fig. 4.1.2.

v1 v2

v3v4 Fig. 4.1.2.
3. Weighted graph : A graph is said to be a weighted graph if all the edges

in it are labelled with some numbers. It is shown in the Fig. 4.1.3.

Data Structure 4–3 A (CS/IT-Sem-3)

2
A

B C

D

EF

1

2

3
4

6

7

Fig. 4.1.3.

4. Simple graph : A graph or directed graph which does not have any self-
loop or parallel edges is called a simple graph.

5. Multi-graph : A graph which has either a self-loop or parallel edges or
both is called a multi-graph.

6. Complete graph :
a. A graph is complete graph if each vertex is adjacent to every other

vertex in graph or there is an edge between any pair of nodes in the
graph.

b. An undirected complete graph will contain n(n – 1)/2 edges.
7. Regular graph :

a. A graph is regular if every node is adjacent to the same number of
nodes.

b. Here every node is adjacent to 3 nodes.

1 2

43

Fig. 4.1.4.

8. Planar graph : A graph is planar if it can be drawn in a plane without
any two intersecting edges.

9. Connected graph :
a. In a graph G, two vertices v1 and v2 are said to be connected if there

is path in G from v1 to v2 or v2 to v1.
b. Connected graph can be of two types :

i. Strongly connected graph
ii. Weakly connected graph

1 4

32

1 4

32

(a) Connected graph (b) Not connected graph

Fig. 4.1.5.

4–4 A (CS/IT-Sem-3) Graphs

10. Acyclic graph : If a graph (digraph) does not have any cycle then it is
called as acyclic graph.

11. Cyclic graph : A graph that has cycles is called a cyclic graph.
12. Biconnected graph : A graph with no articulation points is called a

biconnected graph.
Applications of graph :
1. Graph is a non-linear data structure and is used to present various

operations and algorithms.
2. Graphs are used for topological sorting.
3. Graphs are used to find shortest paths.
4. They are required to minimize some aspect of the graph, such as distance

among all the vertices in the graph.

Que 4.2. What is graph ? Discuss various terminologies used in

graph.

Answer
Graph : Refer Q. 4.1, Page 4–2A, Unit-4.
Various terminologies used in graphs are :
1. Self loop : If there is an edge whose starting and end vertices are same

that is (v2, v2) is an edge then it is called a self loop or simply a loop.
2. Parallel edges : A pair of edges e and e of G are said to be parallel iff

they are incident on precisely the same vertices.
3. Adjacent vertices : A vertex u is adjacent to (or the neighbour of)

other vertex v if there is an edge from u to v.
4. Incidence : In an undirected graph the edge (u, v) is incident on vertices

u and v. In a digraph the edge (u, v) is incident from node u and is
incident to node v.

5. Degree of vertex : The degree of a vertex is the number of edges
incident to that vertex. In an undirected graph, the number of edges
connected to a node is called the degree of that node.

Data Structure for Graph Representations : Adjacency Matrices,
Adjacency List, Adjacency.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.3. Discuss the various types of representation of graph.

Data Structure 4–5 A (CS/IT-Sem-3)

Answer
Two types of graph representation are as follows :
1. Matrix representation : Matrices are commonly used to represent

graphs for computer processing. Advantages of representing the graph
in matrix lies on the fact that many results of matrix algebra can be
readily applied to study the structural properties of graph from an
algebraic point of view.
a. Adjacency matrix :

i. Representation of undirected graph : The adjacency matrix
of a graph G with n vertices and no parallel edges is a n × n
matrix A = [aij] whose elements are given by
aij = 1, if there is an edge between ith and jth vertices

= 0, if there is no edge between them
ii. Representation of directed graph : The adjacency matrix

of a digraph D, with n vertices is the matrix
A = [aij]n×n in which
aij = 1 if arc (vi, vj) is in D

= 0 otherwise
For example : Representation of following undirected and
directed graph is :

v1 v4

v3
v2

Fig. 4.3.1.

v1 v4

v3v2
Fig. 4.3.2.

B =A =

A =

1 2 3 4

1

2

3

4

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

v v v v

v
v
v
v

 
 
 
 
 
 

B =

1 2 3 4

1

2

3

4

0 0 0 1
1 0 1 0
0 0 0 1
0 1 0 0

v v v v

v
v
v
v

 
 
 
 
 
 

b. Incidence matrix
i. Representation of undirected graph : Consider a

undirected graph G = (V, E) which has n vertices and m edges
all labelled. The incidence matrix I(G) = [bij], is then n × m
matrix, where

bij = 1 when edge ej is incident with vi
= 0 otherwise

ii. Representation of directed graph : The incidence matrix
I(D) = [bij] of digraph D with n vertices and m edges is the
n × m matrix in which.

bij = 1 if arc j is directed away from vertex vi
= – 1 if arc j is directed towards vertex vi
= 0 otherwise.

Find the incidence matrix to represent the graph shown in
Fig. 4.3.3.

4–6 A (CS/IT-Sem-3) Graphs

Fig. 4.3.3.

v1 e1 v2

e4 e5 e2

v4 e3 v3

The incidence matrix of the digraph of Fig. 4.3.3 is

I(D) =

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 0 1 1 0

 
  
  
 

 
2. Linked representation :

i. In linked representation, the two nodes structures are used :

a. For non-weighted graph : INFO Adj-list

b. For weighted graph : INFO Adj-listWeight

where Adj-list is the adjacency list i.e., the list of vertices which are
adjacent for the corresponding node.

ii. The header nodes in each list maintain a list of all adjacent vertices
of that node for which the header node is meant.

iii. Suppose a directed graph

1

4 5

2

6

3

Fig. 4.3.4.
iv. The adjacency list representation of this graph.

1

2

3

4

5

2

5

6

2

4

4

5

/

/

6 6

/

/

/

/

Fig. 4.3.5.

Data Structure 4–7 A (CS/IT-Sem-3)

Que 4.4. Explain adjacency multilists.

Answer
1. Adjacency multilist representation maintains the lists as multilists, that

is, lists in which nodes are shared among several lists.
2. For each edge there will be exactly one node, but this node will be in two

lists i.e., the adjacency lists for each of the two nodes, it is incident to.
The node structure now becomes :

Mark vertex 1 vertex 2 path 1 path 2

where mark is a one bit mark field that may be used whether or not the
edge has been examined. The declarations in C are :
#define n 20
typedef struct edge {BOOLEAN mark;

int vertex1, vertex2;
NEXTEDGE path1, path2;
}*NEXTEDGE;
NEXTEDGE headnode [n];

Graph Traversal : Depth First Search and Breadth First Search,
Connected Component.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.5. Write a short note on graph traversal.

Answer
Traversing a graph :
i. Graph is represented by its nodes and edges, so traversal of each node is

the traversing in graph.
ii. There are two standard ways of traversing a graph.
iii. One way is called a breadth first search, and the other is called a depth

first search.
iv. During the execution of our algorithms, each node N of G will be in one

of three states, called the status of N, as follows :
Status = 1  (Ready state). The initial state of the node N.
Status = 2  (Waiting state). The node N is on the queue or

stack, waiting to be processed.
Status = 3  (Processed state). The node N has been

processed.

4–8 A (CS/IT-Sem-3) Graphs

1. Breadth First Search (BFS) : The general idea behind a breadth first
search beginning at a starting node A is as follows :
a. First we examine the starting node A.
b. Then, we examine all the neighbours of A, and so on.
c. We need to keep track of the neighbours of a node, and that no

node is processed more than once.
d. This is accomplished by using a queue to hold nodes that are waiting

to be processed, and by using a field STATUS which tells us the
current status of any node.

Algorithm : This algorithm executes a breadth first search on a graph G
beginning at a starting node A.
i. Initialize all nodes to ready state (STATUS=1).
ii. Put the starting node A in queue and change its status to the waiting

state (STATUS = 2).
iii. Repeat steps (iv) and (v) until queue is empty.
iv. Remove the front node N of queue. Process N and change the status of

N to the processed state (STATUS = 3).
v. Add to the rear of queue all the neighbours of N that are in the ready

state (STATUS=1) and change their status to the waiting state
(STATUS = 2).

[End of loop]
vi. End.
2. Depth First Search (DFS) : The general idea behind a depth first

search beginning at a starting node A is as follows :
a. First, we examine the starting node A.
b. Then, we examine each node N along a path P which begins at A;

that is, we process neighbour of A, then a neighbour of neighbour
of A, and so on.

c. This algorithm uses a stack instead of queue.
Algorithm :
i. Initialize all nodes to ready state (STATUS = 1).
ii. Push the starting node A onto stack and change its status to the waiting

state (STATUS = 2).
iii. Repeat steps (iv) and (v) until queue is empty.
iv. Pop the top node N of stack, process N and change its status to the

processed state (STATUS = 3).
v. Push onto stack all the neighbours of N that are still in the ready state

(STATUS = 1) and change their status to the waiting state
(STATUS = 2).
[End of loop]

vi. End.

Que 4.6. Write and explain DFS graph traversal algorithm.

OR
Write DFS algorithm to traverse a graph. Apply same algorithm
for the graph given in Fig. 4.6.1 by considering node 1 as starting
node.

Data Structure 4–9 A (CS/IT-Sem-3)

1

2

3

4

5

6

7

8

6

7

5

2

1
3

10

14

12

12
204

Fig. 4.6.1.

AKTU 2014-15, Marks 10

Answer
DFS : Refer Q. 4.5, Page 4–7A, Unit-4.
Numerical : Adjacency list of the given graph :

1  2, 7
2  3
3  5, 4, 1
4  6
5  4
6  2, 5, 1
7  3, 6

1. Initially set STATUS = 1 for all vertex
2. Push 1 onto stack and set their STATUS = 2

1
3. Pop 1 from stack, change its STATUS = 1 and

Push 2, 7 onto stack and change their STATUS = 2; DFS = 1

2
7

4. Pop 7 from stack, Push 3, 6; DFS = 1, 7

2
3
6

5. Pop 6 from stack, Push 5; DFS = 1, 7, 6

2
3
5

6. Pop 5 from stack, Push 4; DFS = 1, 7, 6, 5

2
3
4

7. Pop 4 from stack; DFS = 1, 7, 6, 5, 4

2
3

4–10 A (CS/IT-Sem-3) Graphs

8. Pop 3 from stack; DFS = 1, 7, 6, 5, 4, 3

2
9. Pop 2 from stack; DFS = 1, 7, 6, 5, 4, 3

Now, the stack is empty, so the depth first traversal of a given graph is 1, 7,
6, 5, 4, 3.

Que 4.7. Implement BFS algorithm to find the shortest path from

node A to J.
A

B

GE

CF

D

KJ
Fig. 4.7.1.

OR
Explain in detail about the graph traversal techniques with

suitable example. AKTU 2018-19, Marks 07

Answer
Following are the two traversal techniques :
1. Depth First Search (DFS) : Refer Q. 4.5, Page 4–7A, Unit-4.

Example : Refer Q. 4.6, Page 4–8A, Unit-4.
2. Breadth First Search (BFS) : Refer Q. 4.5, Page 4–7A, Unit-4.
To find the shortest path from node A to node J
Adjacency list of the graph is :

A : F, C, B
B : G, C
C : F
D : C
E : D, C, J
F : D
G : C, E
J : D, K
K : E, G

a. Initially set STATUS=1 for all vertex.
b. Now add ‘A’ to Queue and set STATUS = 2

Queue: A
c. Remove A from Queue and set STATUS = 3

and add F, C, B in Queue and change their STATUS = 2
BFS = A Queue: F, C, B

Data Structure 4–11 A (CS/IT-Sem-3)

d. Remove F, add D in Queue
BFS = A, F Queue = C, B, D,

e. Remove C, add F, but F is already visited. So no vertex will be added in
this step

BFS = A, F, Queue = B, D
f. Remove B, add G, BFS = A, F, C, B, Queue = D, G
g. Remove D, BFS = A, F, C, B, D, Queue = G
h. Remove G, add E, BFS = A, F, C, B, D, G, Queue = E
i. Remove E, add J, BFS = A, F, C, B, D, G, E, Queue = J
j. Remove J, BFS = A, F, C, B, D, G, E, J

J is our final destination. We now back track from J to find the path
from J to A : J  E  G  B  A

Que 4.8. Illustrate the importance of various traversing

techniques in graph along with its applications.

AKTU 2016-17, Marks 10

Answer
Various types of traversing techniques are :
1. Breadth First Search (BFS) 2. Depth First Search (DFS)
Importance of BFS :
1. It is one of the single source shortest path algorithms, so it is used to

compute the shortest path.
2. It is also used to solve puzzles such as the Rubik’s Cube.
3. BFS is not only the quickest way of solving the Rubik’s Cube, but also

the most optimal way of solving it.
Application of BFS : Breadth first search can be used to solve many problems
in graph theory, for example :
1. Copying garbage collection.
2. Finding the shortest path between two nodes u and v, with path length

measured by number of edges (an advantage over depth first search).
3. Ford-Fulkerson method for computing the maximum flow in a flow

network.
4. Serialization/Deserialization of a binary tree vs serialization in sorted

order, allows the tree to be re-constructed in an efficient manner.
5. Construction of the failure function of the Aho-Corasick pattern

matcher.
6. Testing bipartiteness of a graph.
Importance of DFS : DFS is very important algorithm as based upon DFS,
there are O(V + E)-time algorithms for the following problems :
1. Testing whether graph is connected.
2. Computing a spanning forest of G.
3. Computing the connected components of G.
4. Computing a path between two vertices of G or reporting that no such

path exists.
5. Computing a cycle in G or reporting that no such cycle exists.

4–12 A (CS/IT-Sem-3) Graphs

Application of DFS : Algorithms that use depth first search as a building
block include :
1. Finding connected components.
2. Topological sorting.
3. Finding 2-(edge or vertex)-connected components.
4. Finding 3-(edge or vertex)-connected components.
5. Finding the bridges of a graph.
6. Generating words in order to plot the limit set of a group.
7. Finding strongly connected components.

Que 4.9. Define connected component and strongly connected

component. Write an algorithm to find strongly connected
components.

Answer
Connected component : Connected component of an undirected graph is
a sub-graph in which any two vertices are connected to each other by paths,
and which is connected to no additional vertices in the super graph.
Strongly connected component : A directed graph is strongly connected
if there is a path between all pairs of vertices. A strong component is a
maximal subset of strongly connected vertices of subgraph.
Kosaraju’s algorithm is used to find strongly connected components in a
graph.
Kosaraju’s algorithm :
1. For each vertex u of the graph, mark u as unvisited. Let L be empty.
2. For each vertex u of the graph do Visit(u), where Visit(u) is the recursive

subroutine. If u is unvisited then :
a. Mark u as visited.
b. For each out-neighbour v of u, do Visit(v).
c. Prepend u to L. Otherwise do nothing.

3. For each element u of L in order, do Assign(u, u) where Assign (u, root)
is the recursive subroutine. If u has not been assigned to a component
then :
a. Assign u as belonging to the component whose root is root.
b. For each in-neighbour v of u, do Assign (v, root).
Otherwise do nothing.

Spanning Tree, Minimum Cost Spanning Trees : Prim’s and
Kruskal’s Algorithm.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Data Structure 4–13 A (CS/IT-Sem-3)

Que 4.10. What do you mean by spanning tree and minimum

spanning tree ?

Answer
Spanning tree :
1. A spanning tree of an undirected graph is a sub-graph that is a tree

which contains all the vertices of graph.
2. A spanning tree of a connected graph G contains all the vertices and has

the edges which connect all the vertices. So, the number of edges will be
1 less than the number of nodes.

3. If graph is not connected, i.e., a graph with n vertices has edges less than
n – 1 then no spanning tree is possible.

4. A connected graph may have more than one spanning trees.
Minimum spanning tree :
1. In a weighted graph, a minimum spanning tree is a spanning tree that

has minimum weight than all other spanning trees of the same graph.
2. There are number of techniques for creating a minimum spanning tree

for a weighted graph but the most famous methods are Prim’s and
Kruskal’s algorithm.

Que 4.11. Write down Prim’s algorithm to find out minimal

spanning tree.

Answer
First it chooses a vertex and then chooses an edge with smallest weight
incident on that vertex. The algorithm involves following steps :
Step 1 : Choose any vertex V1 of G.
Step 2 : Choose an edge e1 =V1V2 of G such that V2  V1 and e1 has smallest

weight among the edge e of G incident with V1.
Step 3 : If edges e1, e2,, ei have been chosen involving end points V1, V2,

............., Vi+1, choose an edge ei+1 = VjVk with Vj = {V1 Vi+1} and
Vk  {V1Vi+1} such that ei+1 has smallest weight among the
edges of G with precisely one end in {V1 Vi+1}.

Step 4 : Stop after n – 1 edges have been chosen. Otherwise goto step 3.

Que 4.12. Define spanning tree. Find the minimal spanning tree

for the following graph using Prim’s algorithm.

6 4 3

7 5 2

1

2 19

9

8
12

21

25 17

13

5

1

Fig. 4.12.1.

AKTU 2014-15, Marks 10

4–14 A (CS/IT-Sem-3) Graphs

Answer
Spanning tree : Refer Q. 4.10, Page 4–13A, Unit-4.
Numerical :

1 2 3 4 5 6 7
1 – 1 9 – – – –
2 1 – 5 – 13 – –
3 9 5 – 19 17 – –
4 – – 19 – 25 2 –
5 – 13 17 25 – 12 21
6 – – – 2 12 – 8
7 – – – – 21 8 –

According to Prim’s algorithm, we choose vertex 1.
We choose edge (1, 2), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25 17

13

5

1

Now at vertex 2, we choose the edge (2, 3), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12 25 17

5

1

21 13
Now at vertex 3, we cannot choose edge (3, 1) because it will create a
cycle so we choose (3, 5).

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

17

1

5

Now at vertex 5, we choose the edge (5, 6) since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

17 5

1

Data Structure 4–15 A (CS/IT-Sem-3)

Now at vertex 6, we choose the edge (6, 7) since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

17 5

1

6 4 3

7 5 2

1

Since in spanning tree, the tree should cover all the vertices and should
not make cycle.
But in the above tree, 4 is remaining so the above asked question is
wrong. If we assume to remove the edge from {3, 5} then the spanning
tree is :

1 2 3 4 5 6 7
1 – 1 9 – – – –
2 1 – 5 – 13 – –
3 9 5 – 19 – – –
4 – – 19 – 25 2 –
5 – 13 17 25 – 12 21
6 – – – 2 12 – 8
7 – – – – 21 8 –

According to Prim’s algorithm, let’s choose vertex 1.
We choose edge {1, 2}, since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

Now at vertex 2, we choose the edge (2, 3), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

4–16 A (CS/IT-Sem-3) Graphs

Now at vertex 3, we choose the edge (3, 4), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12 25

5

1

21 13
Now at vertex 4, we choose the edge (4, 6), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

1

5

Now at vertex 6, we choose the edge (6, 7), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

5

1

Now at vertex 7, we cannot choose the edge (7, 6), because we have
already traversed this edge these we choose (7, 5).

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

 The spanning tree is

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

Data Structure 4–17 A (CS/IT-Sem-3)

Que 4.13. Define spanning tree. Also construct minimum spanning

tree using Prim’s algorithm for the given graph.

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Fig. 4.13.1.

AKTU 2017-18, Marks 07

Answer
Spanning tree : Refer Q. 4.10, Page 4–13A, Unit-4.
Numerical :

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Let us take A as source node.
Now we look on weight
w(A, B) = 12, w(A, F) = 17, w(A, E) = 15
 w(A, B) is smallest. Choose e = (AB)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(B, F) = 7, w(B, D) = 2, w(B, C) = 1
 w(B, C) is smallest  choose e = (BC)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(C, D) = 6

 w(C, D) is smallest  choose e = (CD)

4–18 A (CS/IT-Sem-3) Graphs

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(D, B) = 2, w(D, F) = 10, w(D, E) = 14
 w(D, B) is smallest but forms a cycle
 Discard it.
Now w(D, F) = 10 is smallest  Choose e = (DF)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(F, B) = 7, w(F, A) = 17, w(F, E) = 19
 w(F, B) is smallest but forms cycle
 Discard it
 w(F, A) is smallest but forms cycle
 Discard it
 choose e = (FE)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

The final minimum spanning tree is :

A

E

B

D

F

12

19 10
C

1

6

Que 4.14. Write Kruskal’s algorithm to find minimum spanning

tree.

Answer
i. In this algorithm, we choose an edge of G which has smallest weight

among the edges of G which are not loops.
ii. This algorithm gives an acyclic subgraph T of G and the theorem given

below proves that T is minimal spanning tree of G. Following steps are
required :

Data Structure 4–19 A (CS/IT-Sem-3)

Step 1 : Choose e1, an edge of G, such that weight of e1, w(e1) is as small
as possible and e1 is not a loop.

Step 2 : If edges e1, e2,, ei have been selected then choose an edge
ei+1 not already chosen such that
i. the induced subgraph, G[{e1 ei+1}] is acyclic and
ii. w(ei+1) is as small as possible

Step 3 : If G has n vertices, stop after n – 1 edges have been chosen.
Otherwise repeat step 2.

If G be a weighted connected graph in which the weight of the edges are all
non-negative numbers, let T be a sub-graph of G obtained by Kruskal’s
algorithm then, T is minimal spanning tree.

Que 4.15. Consider the following undirected graph.

23 1 4
938

25 18G

17
3

15

28

A

B C

E

D

F

20

Fig. 4.15.1.
a. Find the adjacency list representation of the graph.
b. Find a minimum cost spanning tree by Kruskal’s algorithm.

AKTU 2015-16, Marks 10

Answer

a.
A B 23 F 28 G 38 ×

A 23 C 20 G 1 ×
B 20 D 15 G 4 ×
C 15 E 3 G 9 ×
D 3 F 17 G 18 ×
A 28 E 17 G 25 ×
A 38 B 1 C 4 D 9 E 18 F 25

B
C
D
E
F
G

Fig. 4.15.2.

×

b.
Kruskal’s algorithm :
i. We will choose e = BG as it has minimum weight.

B

DA G

F E

C
1

4–20 A (CS/IT-Sem-3) Graphs

ii. Now choose e = ED.
B

DA G

F E

1

3

C

iii. Choose e = CG, since it has minimum weights.
B

DA
G

F E

1 4
C

3

iv. Choose e = GD.
B

DA G

F E

1

3

4
9

C

v. Choose e = EF and discard BC, CD and GE because they form cycle.
B

DA
G

F E

4
1 9

3
17

C

vi. Now choose e = AB and discard AG, FG and AF because they form
cycle. Final minimum spanning tree is given as :

B

DA G

F E

1

3

4
9

23

17

C

Fig. 4.15.3.

Que 4.16. What is spanning tree ? Describe Kruskal’s and Prim’s

algorithm to find the minimum cost spanning tree and explain the
complexity. Determine the minimum cost spanning tree for the
graph given below :

c e

b

d
a

5 4

5

4

2 6
9

5

Fig. 4.16.1.

Data Structure 4–21 A (CS/IT-Sem-3)

Answer
Spanning tree : Refer Q. 4.10, Page 4–13A, Unit-4.
Kruskal’s algorithm : Refer Q. 4.14, Page 4–18A, Unit-4.
Prim’s algorithm : Refer Q. 4.11, Page 4–13A, Unit-4.
Complexity :
A. Time complexity of Prim’s algorithm :

1. The time complexity of Prim’s algorithm depends on the data
structures used for the graph and for ordering the edges by weight.

2. A simple implementation of Prim’s, using an adjacency matrix or an
adjacency list graph representation and linearly searching an array
of weights to find the minimum weight edge to add, requires O(|V|2)
running time.

B. Time complexity of Kruskal’s algorithm :
1. Kruskal’s algorithm can be shown to run in O(E log E) time, or

equivalently, O(E log V) time, where E is the number of edges in
the graph and V is the number of vertices, all with simple data
structures.

2. These running times are equivalent because :
a. E is at most V2 and log V2 = 2 log V is O(log V).
b. Each isolated vertex is a separate component of the minimum

spanning forest. If we ignore isolated vertices we obtain V 
2E, so log V is O(log E).

Numerical :
Let us take ‘a’ as a source node.
Now look on weight

w(a, d) = 2, w(a, b) = 9
w(a, c) = 5

 w(a, d) is smallest.
 Choose e = (a, d)

c e

b

d
a

5 4

5

4

2 6
9

5

Now look on weight
w(d, b) = 6, w(d, c) = 4, w(d, e) = 4

 w(d, c) is smallest.
 Choose e = (d, c)

c e

b

d
a

5 4

5

4

2 6
9

5

4–22 A (CS/IT-Sem-3) Graphs

Now look on weight : w(c, e) = 5, w(c, a) = 5
 w(c, a) is smallest but forms a cycle. So discard it.
Now w(c, e) is smallest.
 Choose e = (c, e)

c e

b

d
a

5 4

5

4

2 6
9

5

Now look on weight : w(e, b) = 5, w(e, d) = 4
 w(e, d) is smallest but forms a cycle. So discard it.
Now w(e, b) is smallest.
 Choose e = (e, b)

c e

b

d
a

5 4

5

4

2 6
9

5

Final minimum spanning tree is :

c e

b

d
a

4

5

2

5

The minimal spanning tree is adceb.
Cost of minimal spanning tree is = 2 + 4 + 5 + 5 = 16.

Que 4.17. Find the minimum spanning tree for following graph

using Prim’s and Kruskal’s algorithms.

A

B
E

F

G

H
I

4

4

4

4

1

1

2

2

2

3

3

3

5

5
6

10

C

D

J I

Fig. 4.17.1.

Data Structure 4–23 A (CS/IT-Sem-3)

Answer
Prim’s algorithm :
1. According to algorithm we choose vertex A from the set {A, B, C, D, E,

F, G, H, I, J}.

A
B

C

E

D G

H J I

4

4

4

4

1

1

2

2

2

3

3

3

5
5

6

10

F

Fig. 4.17.2.

2. Now edge with smallest weight incident on A is e = (AD)

4

4

4

4

1

1
2

2

2

3

3

3

5
5

6

10

B C

A

D

H

F
E

G

J I

Fig. 4.17.3.
Now we look on weight

w(A, B) = 4, w(D, B) = 4
w(D, H) = 5, w(D, J) = 6

4

4

4

4

1

1
2

2

2

3

3

3

5
5

6

10

B C

A

D

H J I

F
E

G

Fig. 4.17.4.
We choose e = AB since it is minimum.
w(D, B) can also be chosen because it has same value.
Again, w(B, C) = 4, w(B, J) = 10, w(D, H) = 5, w(D, J) = 6

4–24 A (CS/IT-Sem-3) Graphs

A

B C

D G

E F

H J I

4
4

4

1

1

2

2

5

3

3

32

4 56

10

Fig. 4.17.5.
We choose e = BC since it has minimum value.
Now, w(B, J) = 10, w(C, E) = 2, w(C, F) = 1
We choose e = CF because w(C, F) has minimum value.
Now, w(C, E) = 2, w(F, G) = 3, w(F, I) = 5

A

B C

D G

E F

H J I

4
4

4

1

1

2

2

5

3

3

32

4 56

10

Fig. 4.17.6.
We choose e = CE, since w(C, E) has minimum value.

w(E, G) = 2, w(F, G) = 3, w(F, I) = 5

A

B C

D G

E F

H J I

4
4

4

1

1

2

2

5

3

3

32

4 56

10

Fig. 4.17.7.
We choose e = EG, since w(E, G) has minimum value.

w(G, J) = 4, w(G, I) = 3, w(F, I) = 5

A

B C

D G

E F

H J I

4
4

4

1

1

2

2

5

3

3

32

4 56

10

Fig. 4.17.8.

Data Structure 4–25 A (CS/IT-Sem-3)

We choose e = GI, since w(G, I)has minimum value.
w(I, J) = 3, w(G, J) = 4

A

B C

D G

E F

H J I

4

4

4

1

1

2

2

5

3

3

32

4
56

10

Fig. 4.17.9.
We choose e = IJ, since w(I, J) has minimum value, w(J, H) = 2
Hence, e = JH will be chosen. The final minimal spanning tree is :

A

B C

D G

E F

H J I

4
4

1

1

2

2

3

32

4

Fig. 4.17.10.
Kruskal’s algorithm :
i. We will choose e = AD and CF as it has minimum weight.

4
4

4

4

1

1

2

2

2

3

3

3

5
56

10

A

B C

E F

D

H

J
I

G

Fig. 4.17.11.
ii. Now choose e = CF.

4
4

4

4

1

1

2

2

2

3

3

3

5
56

10

A

B C

E F

D

H

J
I

G

Fig. 4.17.12.

4–26 A (CS/IT-Sem-3) Graphs

iii. Choose CE, EG and HJ since they have same and minimum weights.

4
4

4

4

1

1

2

2

2

3

3

3

5
56

10

A

B C

E F

D

H

J
I

G

Fig. 4.17.13.
iv. Choose IJ and GI as it has minimum weight and discard GF because

it forms cycle.

4
4

4

4

1

1

2

2

2

3

3

3

5
56

10

A
B C

E F

D

H

J
I

G

Fig. 4.17.14.
v. Choose AB and BC and discard BD, GJ, DH, DJ, BJ, FI because

they form cycle.
We get the final minimal spanning tree as

4 4

4

1

1

2

2

3

3

5 6

A
B C

E F
D

I

G
2

H J

Fig. 4.17.15.

Que 4.18. Discuss Prim’s and Kruskal’s algorithm. Construct

minimum spanning tree for the below given graph using Prim’s

algorithm (Source node = a). AKTU 2016-17, Marks 15

Data Structure 4–27 A (CS/IT-Sem-3)

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 4.18.1.

Answer
Prim’s algorithm : Refer Q. 4.11, Page 4–13A, Unit-4.
Kruskal’s algorithm : Refer Q. 4.14, Page 4–18A, Unit-4.
Numerical :

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 4.18.2.
Start with source node = a
Now, edge with smallest weight incident on a is e = (a, c).
So, we choose e = (a, c).
Now we look on weights :

w(c, d) = 4, w(c, e) = 2, w(c, b) = 5

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 4.18.3.
Since minimum is w(c, e) = 2. We choose e = (c, e)
Again, w(e, d) = 3

w(e, a) = 8
w(e, b) = 7

4–28 A (CS/IT-Sem-3) Graphs

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 4.18.4.
Since minimum is w(e, d) = 3, we choose e = (e, d)

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 4.18.5.

Now, w(d, b) = 7, and w(a, b) = 3
Since minimum is w(a, b) = 3, we choose e = (a, b)

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 4.18.6.

Therefore, the minimum spanning tree is :

b

d

a

c

e

1

2
3

Fig. 4.18.7.

3

Data Structure 4–29 A (CS/IT-Sem-3)

Transitive Closure and Shortest Path Algorithm : Warshall
Algorithm and Dijkstra Algorithm.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.19. Explain transitive closure.

Answer
1. The transitive closure of a graph G is defined to be the graph G such

that G has the same nodes as G and there is an edge (vi, vj) in G
whenever there is a path from vi to vj in G.

2. Accordingly the path matrix P of the graph G is precisely the adjacency
matrix of its transitive closure G.

3. The transitive closure of a graph G is defined as G* or G = (V, E*).
where, E* = {(i, j) there is a path from vertex i to

vertex j in G}
4. We construct the transitive closure G* = (V, E*) by putting edge (i, j)

into E* if and only if tij(n) = 1.

5. The recursive definition of ()k
ijt is

(0)
ijt =

0 if and (,)
1 if or (,)

i j i j E
i j i j E
 

  
and for k  1

()k
ijt = (1)k

ijt   (1) (1)()k k
ik kjt t 

Que 4.20. Write down Warshall’s algorithm for finding all pair

shortest path.

Answer
1. Floyd Warshall algorithm is a graph analysis algorithm for finding

shortest paths in a weighted, directed graph.
2. A single execution of the algorithm will find the shortest path between

all pairs of vertices.
3. It does so in (V3) time, where V is the number of vertices in the graph.
4. Negative-weight edges may be present, but we shall assume that there

are no negative-weight cycles.

4–30 A (CS/IT-Sem-3) Graphs

5. The algorithm considers the “intermediate” vertices of a shortest path,
where an intermediate vertex of a simple path p = (v1, v2, ..., vm) is any
vertex of p other than v1 or vm, that is, any vertex in the set
{v2, v3,..., vm–1}.

6. Let the vertices of G be V = {1, 2,..., n}, and consider a subset
{1, 2, ..., k} of vertices for some k.

7. For any pair of vertices i, j  V, consider all paths from i to j whose
intermediate vertices are all drawn from {1, 2,..., k}, and let p be a
minimum-weight path from among them.

8. Let ()k
ijd be the weight of a shortest path from vertex i to vertex j with

all intermediate vertices in the set {1, 2, ..., k}.
A recursive definition is given by

()k
ijd = (–1) (–1) (–1)

if 0
min(,) if 1

ij
k k k

ij ik kj

w k
d d d k


  

Floyd Warshall (w) :
1. n  rows [w]
2. D(0)  w
3. for k  1 to n
4. do for i  1 to n
5. do for j  1 to n

6. do ()k
ijd  (–1) (–1) (–1)min(,)k k k

ij ik kjd d d

7. return D(n)

Que 4.21. Write the Floyd Warshall algorithm to compute the all

pair shortest path. Apply the algorithm on following graph :

h2

h1

h5

h6

h3

h4

7
2

8

5 3

1
3

2
8

6

Fig. 4.21.2.

AKTU 2018-19, Marks 07

Answer
Floyd’s Warshall algorithm : Refer Q. 4.20, Page 4–29A, Unit-4.
Numerical : We cannot solve this using Floyd Warshall algorithm because
the given graph is undirected.

Data Structure 4–31 A (CS/IT-Sem-3)

Que 4.22. Write and explain Dijkstra’s algorithm for finding

shortest path.
OR

Write and explain an algorithm for finding shortest path between
any two nodes of a given graph.

Answer
a. Dijkstra’s algorithm, is a greedy algorithm that solves the single-source

shortest path problem for a directed graph G = (V, E) with non-negative
edge weights, i.e., we assume that w(u, v)  0 each edge (u, v)  E.

b. Dijkstra’s algorithm maintains a set S of vertices whose final shortest-
path weights from the source s have already been determined.

c. That is, for all vertices v  S, we have d[v] = (s, v).
d. The algorithm repeatedly selects the vertex u  V – S with the minimum

shortest-path estimate, inserts u into S, and relaxes all edges leaving u.
e. We maintain a priority queue Q that contains all the vertices in

v – s, keyed by their d values.
f. Graph G is represented by adjacency list.
g. Dijkstra’s always chooses the “lightest or “closest” vertex in V – S to

insert into set S, that it uses as a greedy strategy.
DIJKSTRA (G, w, s)
1. INITIALIZE-SINGLE-SOURCE (G, s)
2. S  
3. Q  V[G]
4. while Q  
5. do u  EXTRACT-MIN (Q)
6. S  S  {u}
7. for each vertex v  Adj [u]
8. do RELAX (u, v, w)

Que 4.23. Find out the shortest path from node 1 to node 4 in a

given graph (Fig. 4.23.1) using Dijkstra shortest path algorithm.

1

2

3

4

5

6

7

8

6

7

5

2

1
3

10

14

12

12
204

Fig. 4.23.1.

AKTU 2014-15, Marks 10

4–32 A (CS/IT-Sem-3) Graphs

Answer

0

1 2 3 4 5 6 7

0

0

0

0

0

0

     

7

7

7

7

7

7

17

17

11

11

11

11







16

14

14







12

12

12





14

14

14

14

8

8

8

8

8

8
Shortest path from node 1 to node 4 = 0 + 7 + 11 + 14 = 32

Que 4.24. Describe Dijkstra’s algorithm for finding shortest path.
Describe its working for the graph given below.

A

E

D

10
100

30
10

60

20

50

B

C

Fig. 4.24.1.

Wxz

AKTU 2017-18, Marks 07
OR

Explain Dijkstra’s algorithm with suitable example.

AKTU 2015-16, Marks 10

Answer
Algorithm : Refer Q. 4.22, Page 4–31A, Unit-4.
Numerical :

A

E

D

10
100

30 10

60

20

50

B

C

Data Structure 4–33 A (CS/IT-Sem-3)

Extract min (A) :

A

E

D

B

C

0







A

0

B



C



D



E



10
100

30 10

60

20

50

All edges leaving A :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30 10

50

20

60

100

Extract min (B) :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30

50

20

60

10

100

All edges leaving B :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

10

1030

100

60

20

50

4–34 A (CS/IT-Sem-3) Graphs

Extract min(D) :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

100
10

50

20

60

30 10

All edges leaving (D) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

30

50

10

10

20

50

30

60

100
90

Extract min(C) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

90

30

50

30

50

20

60

10

10

100

All edges leaving C :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10
60

30

50

10

10

50

20

60

30

100

Data Structure 4–35 A (CS/IT-Sem-3)

Extract min(E) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10

60

30

50

10

1030

20

50

100

60

Shortest path :

A

E

D

B

C

0

10

60

30
50

30

10

10

20

Que 4.25. By considering vertex ‘1’ as source vertex, find the

shortest paths to all other vertices in the following graph using
Dijkstra’s algorithms. Show all the steps.

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

Fig. 4.25.1.

AKTU 2018-19, Marks 07

Answer
Initialize :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { }

1 2 3 4 5 6
0     

 

 

0 Q :

4–36 A (CS/IT-Sem-3) Graphs

EXTRACT – MIN (1) :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { 1 }

1 2 3 4 5 6

0     

 

 

0 Q :

Relax all edges leaving 1 :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { 1 }

1 2 3 4 5 6

0     





0

9

9 4 – – –
4

Q :

EXTRACT – MIN (3) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3 }

1 2 3 4 5 6
0     





0

9

9 4 – – –4

Q :

Relax all edges leaving 3 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3 }

1 2 3 4 5 6

0     



0

8

9 4 – – –

4 17 8 – 17 –

Q :

EXTRACT – MIN (2) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2 }

1 2 3 4 5 6
0     

0

8

9 4 – – –

4 17 8 – 17 –

Q :



Data Structure 4–37 A (CS/IT-Sem-3)

Relax all edges leaving 2 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

20

20 13 –

Q :

EXTRACT – MIN (5) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

20

20 13 –

Q :



Relax all edges leaving 5 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

16

20 13 –

Q :

28

16 28

EXTRACT – MIN (4) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

28

16

13

28

Q :

4–38 A (CS/IT-Sem-3) Graphs

Relax all edges leaving 4 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

18

16

13

28

Q :

18
EXTRACT – MIN (6) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4, 6 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

18

16

13

28

Q :

18

Data Structure 4–39 A (CS/IT-Sem-3)

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. Write DFS algorithm to traverse a graph. Apply same
algorithm for the graph given in Fig. 1 by considering node
1 as starting node.

1

2

3

4

5

6

7

8

6

7

5

2

1

3

10

14

12

12
204

Fig. 1.

Ans. Refer Q. 4.6.

Q. 2. Illustrate the importance of various traversing techniques
in graph along with its applications.

Ans. Refer Q. 4.8.

Q. 3. Define spanning tree. Also construct minimum spanning
tree using Prim’s algorithm for the given graph.

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Fig. 2.

Ans. Refer Q. 4.13.

4–40 A (CS/IT-Sem-3) Graphs

Q. 4. Consider the following undirected graph.
a. Find the adjacency list representation of the graph.
b. Find a minimum cost spanning tree by Kruskal’s algorithm.

23 1 4
938

25 18G

17
3

15

28

A

B C

E

D

F

20

Fig. 3.

Ans. Refer Q. 4.15.

Q. 5. Discuss Prim’s and Kruskal’s algorithm. Construct
minimum spanning tree for the below given graph using
Prim’s algorithm (Source node = a).

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 4.

Ans. Refer Q. 4.18.

Q. 6. Write the Floyd Warshall algorithm to compute the all pair
shortest path. Apply the algorithm on following graph :

h2

h1

h5

h6

h3

h4

7
2

8

5 3

1
3

2
8

6

Fig. 5.

Ans. Refer Q. 4.21.

Data Structure 4–41 A (CS/IT-Sem-3)

Q. 7. Describe Dijkstra’s algorithm for finding shortest path.
Describe its working for the graph given below.

A

E

D

10
100

30
10

60

20

50

B

C

Fig. 6.

Ans. Refer Q. 4.24.

Q. 8. Find out the shortest path from node 1 to node 4 in a given
graph (Fig. 7) using Dijkstra shortest path algorithm.

1

2

3

4

5

6

7

8

6

7

5

2

1
3

10

14

12

12
204

Fig. 7.

Ans. Refer Q. 4.23.

Q. 9. By considering vertex ‘1’ as source vertex, find the shortest
paths to all other vertices in the following graph using
Dijkstra’s algorithms. Show all the steps.

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

Fig. 8.

Ans. Refer Q. 4.25.



Data Structure 5–1 A (CS/IT-Sem-3)

CONTENTS
Part-1 : Basic Terminology Used With 5–2A to 5–8A

Tree, Binary Trees, Binary
Tree Representation : Array
Representation and Pointer
(Linked List) Representation

Part-2 : Binary Search Tree, Strictly 5–8A to 5–12A
Binary Tree, Complete Binary
Tree, A Extended Binary Trees

Part-3 : Tree Traversal Algorithm : 5–13A to 5–19A
Inorder, Preorder and Postorder,
Constructing Binary Tree from
Given Tree Traversal

Part-4 : Operation of Insertion, Deletion, 5–19A to 5–22A
Searching and Modification
of Data in Binary Search

Part-5 : Threaded Binary Trees, 5–22A to 5–28A
Traversing Threaded
Binary Trees, Huffman
Coding Using Binary Tree

Part-6 : Concept and Basic 5–28A to 5–49A
Operation for AVL Tree,
B Tree and Binary Heaps

Trees

5

5–2 A (CS/IT-Sem-3) Trees

Basic Terminology used with Tree, Binary Trees, Binary Tree
Representation : Array Representation and Pointer (Linked List)

Representation.

PART-1

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.1. Explain the following terms :

i. Tree ii. Vertex of Tree
iii. Depth iv. Degree of an element
v. Degree of Tree vi. Leaf

Answer
i. Tree : A tree T is a finite non-empty set of elements. One of these

elements is called the root, and the remaining elements, if any is
partitioned into trees is called subtree of T. A tree is a non-linear data
structure.

ii. Vertex of tree : Each node of a tree is known as vertex of tree.

A

B C

D

Vertex of tree

Fig. 5.1.1.
iii. Depth : The depth of binary tree is the maximum level of any leaf in the

tree. This equals the length of the longest path from the root to any leaf.

Depth of Fig. 5.1.2 tree is 2.

A

B C

ED F
Fig. 5.1.2.

iv. Degree of an element : The number of children of node is known as
degree of the element.

Data Structure 5–3 A (CS/IT-Sem-3)

v. Degree of tree : In a tree, node having maximum number of degree is
known as degree of tree.

vi. Leaf : A terminal node in tree is known as leaf node or a node which has
no child is known as leaf node.

Que 5.2. Show that the maximum number of nodes in a binary

tree of height h is 2h + 1 – 1.

Answer
If we consider the maximum nodes in a tree then all leaves will have the
same depth and all internal nodes have left child and right child both.

Node

depth 0 = 120

depth 1 = 221

depth 2 = 422

depth 3 = 823

Fig. 5.2.1.
1. The root has 2 children at depth 1, each of which has 2 children at depth

2 i.e., 4.
2. Thus, the number of leaves at depth h is 2h, so we can calculate the

maximum number of nodes in a binary tree as :
= 1 + 2 + 4 + 8 + 16 + ... 2h

= 20 + 21 + 22 + 23 + ... 2h

=
1

0

2 1
2

2 1

hh
i

i








 = 2h + 1 – 1

Thus, a binary tree having height h, has 2h + 1 – 1 maximum number of nodes.

Que 5.3. Explain binary tree representation using array.

Answer
1. In an array representation, nodes of the tree are stored level-by-level,

starting from 0th level.

2. Missing elements are represented by white boxes.

3. This representation scheme is wasteful of space when many elements
are missing.

4. In fact, a binary tree that has n-elements may require an array of size
up to 2n (including position 0) for its representation.

5–4 A (CS/IT-Sem-3) Trees

5. This maximum size is needed when each element (except the root) of
the n-element binary tree is the right child of its parent.

6. Fig. 5.3.1, shows such a binary tree with four elements. Binary trees of
this type are called right-skewed binary trees.

1

2

4 5 6

3

7

A B C D E

Fig. 5.3.1.

Que 5.4. Explain binary tree representation using linked list.

Answer
1. Consider a binary tree T which uses three parallel arrays, INFO, LEFT

and RIGHT, and a pointer variable ROOT.
2. First of all, each node N of T will correspond to a location K such that :

a. INFO[K] contains the data at the node N.
b. LEFT[K] contains the location of the left child of node N.
c. RIGHT[K] contains the location of the right child of node N.

3. ROOT will contain the location of the root R of T.
4. If any subtree is empty, then the corresponding pointer will contain

the null value.
5. If the tree T itself is empty, then ROOT will contain the null value.
6. INFO may actually be a linear array of records or a collection of parallel

arrays.

Que 5.5. Write a C program to implement binary tree insertion,

deletion with example. AKTU 2016-17, Marks 10

Answer
#include<stdlib.h>
#include<stdio.h>
struct bin_tree {
int data;
struct bin_tree *right, *left;
};
typedef struct bin_tree node;
void insert(node *tree, int val)
{
node *temp = NULL;
if(!(*tree))
{

Data Structure 5–5 A (CS/IT-Sem-3)

temp = (node *)malloc(sizeof(node));
temp->left = temp->right = NULL;
temp->data = val;
*tree = temp;
return;
}
if(val < (*tree)->data)
{
insert(&(*tree)->left, val);
}
else if(val > (*tree)->data)
{
insert(&(*tree)->right, val);
}
}
void print_inorder(node *tree)
{
if (tree)
{
print_inorder(tree->left);
printf(“%d\n”,tree->data);
print_inorder(tree->right);
}
}
void deltree(node *tree)
{
if (tree)
{
deltree(tree->left);
deltree(tree->right);
free(tree);
}
}
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */
insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);

5–6 A (CS/IT-Sem-3) Trees

/* Printing nodes of tree */
printf(“After insertion inorder display\n”);
print_inorder(root);
/* Deleting all nodes of tree */
deltree(root);
printf(“Tree is empty”);
}
Output of program :
After insertion inorder display
2
4
6
9
12
15
17
Tree is empty.

Que 5.6. Write the C program for various traversing techniques

of binary tree with neat example. AKTU 2016-17, Marks 10

Answer
#include<stdio.h>
#include<stdlib.h>
struct node
{
int value;
node* left;
node* right;
};
struct node* root;
struct node* insert(struct node* r, int data);
void inorder(struct node* r);
void preorder(struct node* r);
void postorder(struct node* r);
int main()
{
root = NULL;
int n, v;
printf(“How many data do you want to insert ?\n”);
scanf(“%d”, &n);
for(int i=0; i<n; i++){
printf(“Data %d: ”, i+1);
scanf(“%d”, &v);
root = insert(root, v);

Data Structure 5–7 A (CS/IT-Sem-3)

}
printf(“Inorder Traversal :”);
inorder(root);
printf(“\n”);
printf(“Preorder Traversal :”);
preorder(root);
printf(“\n”);
printf(“Postorder Traversal :”);
postorder(root);
printf(“\n”);
return 0;
}
struct node* insert(struct node* r, int data)
{
if(r==NULL)
{
r = (struct node*) malloc(sizeof(struct node));
r->value = data;
r->left = NULL;
r->right = NULL;
}
else if(data < r->value){
r->left = insert(r->left, data);
}
else {
r->right = insert(r->right, data);
}
return r;
}
void inorder(struct node* r)
{
if(r!=NULL){
inorder(r->left);
printf(“%d ”, r->value);
inorder(r->right);
}
}
void preorder(struct node* r)
{
if(r!=NULL){
printf(“%d”, r->value);
preorder(r->left);
preorder(r->right);
}
}
void postorder(struct node* r)
{

5–8 A (CS/IT-Sem-3) Trees

if(r!=NULL){
postorder(r->left);
postorder(r->right);
printf(“%d”, r->value);
}
}
Output :
How many data do you want to insert ?
5
Preorder Traversal :
3 2 1 4 5
Inorder Traversal :
1 2 3 4 5
Postorder Traversal :
1 2 5 4 3

Binary Search Tree, Strictly Binary Tree, Complete Binary Tree,
A Extended Binary Tree.

PART-2

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.7. Explain binary search tree and its operations. Make a

binary search tree for the following sequence of numbers, show all
steps : 45, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11, 50, 10.

AKTU 2015-16, Marks 10

Answer

Binary search tree :
1. A binary search tree is a binary tree.
2. Binary search tree can be represented by a linked data structure in

which each node is an object.
3. In addition to a key field, each node contains fields left, right and P,

which point to the nodes corresponding to its left child, its right child and
its parent respectively.

4. A non-empty binary search tree satisfies the following properties :
a. Every element has a key (or value) and no two elements have the

same value.
b. The keys, if any, in the left subtree of root are smaller than the key

in the node.

Data Structure 5–9 A (CS/IT-Sem-3)

c. The keys, if any in the right subtree of the root are larger than the
keys in the node.

d. The left and right subtrees of the root are also binary search tree.
Various operations of BST are :
a. Searching in a BST :

Searching for a data in a binary search tree is much faster than in
arrays or linked lists. The TREE-SEARCH (x, k) algorithm searches the
tree root at x for a node whose key value equals to k. It returns a pointer
to the node if it exist otherwise NIL.
TREE-SEARCH (x, k)

1. If x = NIL or k = key [x]
2. then return x
3. If k < key [x]
4. then return TREE-SEARCH (left [x], k)
5. else return TREE-SEARCH (right [x], k)
b. Traversal operation on BST :

All the traversal operations are applicable in binary search trees. The
inorder traversal on a binary search tree gives the sorted order of data
in ascending (increasing) order.

c. Insertion of data into a binary search tree :
To insert a new value w into a binary search tree T, we use the procedure
TREE-INSERT. The procedure passed a node z for which key[z] = w,
left [z] = NIL and Right [z] = NIL.

1. y  NIL
2. x  root [T]
3. while x  NIL
4. do y  x
5. if key [z] < key [x]
6. then x  left [x]
7. else x  right [x]
8. P[z]  y
9. if y = NIL
10. then root [T]  z
11. else if key [z] < key [y]
12. then left [y]  z
13. else right [y]  z
d. Delete a node : Deletion of a node from a BST depends on the number

of its children. Suppose to delete a node with key = z from BST T, there
are 3 cases that can occur.
Case 1 : N has no children. Then N is deleted from T by simply replacing
the location of N in the parent node P(N) by the null pointer.
Case 2 : N has exactly one child. Then N is deleted from T by simply
replacing the location of N in P(N) by the location of the only child of N.
Case 3 : N has two children. Let S(N) denote the inorder successor of N.
(The reader can verify that S(N) does not have a left child). Then N is
deleted from T by first deleting S(N) from T (by using Case 1 or Case 2)
and then replacing node N in T by the node S(N).

5–10 A (CS/IT-Sem-3) Trees

Numerical :
1. Insert 45 : 2. Insert 32 :

45 45

32
3. Insert 90 : 4. Insert 34 :

45

32 90

45

32 90

34

5. Insert 68 : 6. Insert 72 :

45

32 90

6834

45

32 90

34 68

72
7. Insert 15 : 8. Insert 24 :

45

32 90

72

683415

45

90

6834

7224

32

15

9. Insert 30 : 10. Insert 66 :

45

32

15

90

34

24

30

68

72

45

32

15

90

34

24

30

68

7266

11. Insert 11 :

45

32 90

3415

2411

30

68

7266

Data Structure 5–11 A (CS/IT-Sem-3)

12. Insert 50 :

45

32

15

90

34 68

7211 24

30

66

50

13. Insert 10 :
45

32

15

90

34 68

7211 24

30

66

5010

Que 5.8. Define binary search tree. Create BST for the following

data, show all steps :

20, 10, 25, 5, 15, 22, 30, 3, 14, 13 AKTU 2014-15, Marks 10

Answer
Binary search tree : Refer Q. 5.7, Page 5–8A, Unit-5.
Numerical :
20, 10, 25, 5, 15, 22, 30, 3, 14, 13
1. Insert 20 : 2. Insert 10 :

20
10

20

3. Insert 25 : 4. Insert 5 :

10

20

25 10

20

25

5

5–12 A (CS/IT-Sem-3) Trees

5. Insert 15 : 6. Insert 22 :

10

20

25

5 15

10

20

25

5 15
22

7. Insert 30 : 8. Insert 3 :

10

20

25

5 15 22 30

10

20

25

5 15 22 30

3
9. Insert 14 : 10. Insert 13 :

10

20

25

5 15 22 30

3 14

10

20

25

5 15 22 30

3 14

13

Que 5.9. Write a short note on strictly binary tree, complete

binary tree and extended binary tree.

Answer

Strictly binary tree :
a. If every non-leaf node in a binary tree has non-empty left and right

subtree, the tree is termed as strictly binary tree.
b. A strictly binary tree with n leaves always contains 2n – 1 nodes.
c. If every non-leaf node in a binary tree has exactly two children, the tree

is known as strictly binary tree.
Complete binary tree : A tree is called a complete binary tree if tree
satisfies following conditions :
a. Each node has exactly two children except leaf node.
b. All leaf nodes are at same level.
c. If a binary tree contains m nodes at level l, it contains atmost 2m nodes

at level l + 1.
Extended binary tree :
a. A binary tree T is said to be 2-tree or extended binary tree if each node

has either 0 or 2 children.
b. Nodes with 2 children are called internal nodes and nodes with 0 children

are called external nodes.

Data Structure 5–13 A (CS/IT-Sem-3)

Tree Traversal Algorithm : Inorder, Preorder and Postorder,
Constructing Binary Tree From Given Tree Traversal.

PART-3

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.10. Define tree, binary tree, complete binary tree and full

binary tree. Write algorithm or function to obtain traversals of a
binary tree in preorder, postorder and inorder.

AKTU 2017-18, Marks 07

Answer

Tree : Refer Q. 5.1, Page 5–2A, Unit-5.
Binary tree :
1. A binary tree T is defined as a finite set of elements called nodes, such

that :
a. T is empty (called the null tree).
b. T contains a distinguished node R, called the root of T, and the

remaining nodes of T form an ordered pair of disjoint binary trees
T1 and T2.

2. If T does contain a root R, then the two trees T1 and T2 are called,
respectively, the left and right subtrees of R.

3. If T1 is non-empty, then its root is called the left successor of R similarly,
if T2 is non-empty, then its root is called the right successor of R.

Complete binary tree : Refer Q. 5.10, Page 5–14A, Unit-5.
Full binary tree :
1. A full binary tree is formed when each missing child in the binary tree is

replaced with a node having no children.
2. These leaf nodes are drawn as squares in the Fig. 5.10.1.

1

2 3

4 5 6

7

Fig. 5.10.1. Full binary tree.

5–14 A (CS/IT-Sem-3) Trees

3. Each node is either a leaf or has degree exactly 2.
Algorithm for preorder traversal :
Preorder (INFO, LEFT, RIGHT, ROOT)

1. [Initially push NULL onto STACK, and initialize PTR]
Set TOP = 1, STACK [1] = NULL and PTR = ROOT

2. Repeat steps 3 to 5 while PTR  NULL
3. Apply process to INFO [PTR]
4. [Right child?]

If RIGHT [PTR]  NULL
Then
[Push on STACK]
Set TOP = TOP + 1 and
STACK [TOP] = RIGHT [PTR]
Endif

5. [Left child?]
If LEFT [PTR]  NULL then
set PTR = LEFT[PTR]
Else
[Pop from STACK]
set PTR = STACK[TOP] and TOP = TOP – 1
Endif
End of step 2

6. Exit
Algorithm for inorder traversal :
Inorder (INFO, LEFT, RIGHT, ROOT)

1. [Push NULL onto STACK and initialize PTR]
Set TOP = 1, STACK[1] = NULL and PTR = ROOT

2. Repeat while PTRNULL
[Push leftmost path onto STACK]

a. Set TOP = TOP + 1 and
STACK [TOP] = PTR

b. Set PTR = LEFT [PTR]
End loop

3. Set PTR = STACK[TOP] and TOP = TOP – 1
4. Repeat steps 5 to 7 while PTR  NULL
5. Apply process to INFO[PTR]
6. [Right Child?] If RIGHT [PTR]  NULL

Then
a. Set PTR = RIGHT [PTR]
b. goto step 2

Endif
7. Set PTR = STACK[TOP] and TOP = TOP – 1

End of Step 4 Loop
8. Exit

Data Structure 5–15 A (CS/IT-Sem-3)

Algorithm for postorder traversal :
Postorder (INFO, LEFT, RIGHT, ROOT)

1. [Push NULL onto STACK and initialize PTR]
Set TOP = 1, STACK[1] = NULL and PTR = ROOT

2. [Push leftmost path onto STACK]
Repeat steps 3 to 5 while PTR  NULL

3. Set TOP = TOP + 1 and STACK [TOP] = PTR
[Pushes PTR on STACK]

4. If RIGHT [PTR]  NULL
Then
Set TOP = TOP + 1 and STACK [TOP] = RIGHT [PTR]
Endif

5. Set PTR = LEFT [PTR]
End of step 2 loop

6. Set PTR = STACK [TOP] and TOP = TOP – 1
[Pops node from STACK]

7. Repeat while PTR > 0
a. Apply process to INFO [PTR]
b. Set PTR = STACK [TOP] and TOP = TOP – 1

End loop
8. If PTR < 0 Then
a. Set PTR = – PTR
b. goto step 2

Endif
9. Exit

Que 5.11. Construct a binary tree for the following :

Inorder : Q, B, K, C, F, A, G, P, E, D, H, R
Preorder : G, B, Q, A, C, K, F, P, D, E, R, H

Find the postorder of the tree. AKTU 2018-19, Marks 07

Answer
Step 1 : In preorder traversal root is the first node. So, G is the root node of
the binary tree. So,

G
root

Step 2 : We can find the node of left sub-tree and right sub-tree with
inorder sequence. So,

G

Q, B, K, C, F, A P, E, D, H, R

5–16 A (CS/IT-Sem-3) Trees

Step 3 : Now, the left child of the root node will be the first node in the
preorder sequence after root node G. So,

Q

B

G

K, C, F, A

P, E, D, H, R

Step 4 : In inorder sequence, Q is on the left side of B and A is on the right
side B. So,

Q

B

G

K, C, F

P, E, D, H, R

A

Step 5 : In inorder sequence, C is on the left side of A . Now according to
inorder sequence, K is on the left side of C and F is on the right side of C.

Q

B

G

P, E, D, H, R

A

C

K F

Step 6 : Similarly, we can go further for right side of G.

G

B

Q A

P

E, D, H, R

C

K F

Data Structure 5–17 A (CS/IT-Sem-3)

So, the final tree is

G

B

Q A

RE

H

C

K F

D

P

Postorder of tree : Q, K, F, A, B, E, H, R, D, P, G

Que 5.12. Draw a binary tree with following traversal :

Inorder : D B H E A I F J C G

Preorder : A B D E H C F I J G AKTU 2015-16, Marks 10

Answer
From preorder traversal, we get root node to be A.

A

IFJCGDBHE

Now considering left subtree.
Observing both the traversal we can get B as root node and D as left child and
HE as a right subtree.

A

IFJCG

D HE

B

Now observing the preorder traversal we get E as a root node and H as a left
child.

A

IFJCG

D

B

E

H

Repeating the above process with the right subtree of root node A, we finally
obtain the required tree in given Fig. 5.12.1.

5–18 A (CS/IT-Sem-3) Trees

A
B C

D H F G

I JE
Fig. 5.12.1.

Que 5.13. Draw a binary tree with following traversals :

Inorder : B C A E G D H F I J

Preorder : A B C D E F G H I J AKTU 2017-18, Marks 07

Answer
From preorder traversal, we get root node to be A.

A

EGDHFIJBC

Now considering left subtree.
Observing both the traversal we can get B as root node and C as right child.

A

EGDHFIJB

C
Now, consider the right subtree.
Preorder traversal is DEGFHIJ, which shows D is root node.
Inorder traversal is EGDHFIJ, which shows EG is left subtree and HFIJ is
right subtree.

A

D

EGC

B

HFIJ

Now, consider the left subtree of D.
Preorder traversal is EG and inorder traversal is EG.
 E is root node and G is right subtree.

A

D

EC

B

HFIJ

G

Data Structure 5–19 A (CS/IT-Sem-3)

Similarly, following the same procedure, we finally get

A

D

EC

B

F

I

J
G

H

Operation of Insertion, Deletion, Searching and Modification of
Data in Binary Search.

PART-4

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.14. Write a procedure to insert a new element in a binary

search tree.

Answer

INSBST(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM, LOC)
A binary search tree T is in memory and an ITEM of information is given.
This algorithm finds the location LOC of ITEM in T or adds ITEM as a new
node in T at location LOC.
1. Call FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR).
2. If LOC  NULL, then Exit.
3. [Copy ITEM into new node in AVAIL list.]

a. If AVAIL = NULL, then write OVERFLOW, and Exit.
b. Set NEW := AVAIL, AVAIL := LEFT[AVAIL] and

INFO[NEW] := ITEM.
c. Set LOC := NEW, LEFT[NEW] := NULL and

RIGHT[NEW] := NULL.
4. [Add ITEM to tree.]

If PAR = NULL, then :
Set ROOT := NEW.

Else if ITEM < INFO[PAR], then:
Set LEFT[PAR] := NEW.

Else :
Set RIGHT[PAR] := NEW

[End of If structure]

5–20 A (CS/IT-Sem-3) Trees

5. Exit.

Que 5.15. Write the algorithm for deletion of an element in binary

search tree. AKTU 2018-19, Marks 07

Answer
DEL(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)
A binary search tree T is in memory, and an ITEM of information is given.
This algorithm deletes ITEM from the tree.
1. [Find the locations of ITEM and its parent]

Call FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR)
2. [ITEM in tree ?]

If LOC = NULL, then write ITEM not in tree, and Exit.
3. [Delete node containing ITEM]

If RIGHT[LOC]  NULL and LEFT[LOC]  NULL, then :
Call CASEB(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
Else :
Call CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
[End of If structure]

4. [Return deleted node to the AVAIL list]
Set LEFT[LOC] := AVAIL and AVAIL := LOC

5. Exit.

Que 5.16. Write a procedure to delete an element from binary

search tree where node does not have two children.

Answer
CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
This procedure deletes the node N at location LOC, where N does not have
two children. The pointer PAR gives the location of the parent of N, or else
PAR = NULL indicates that N is the root node. The pointer CHILD gives the
location of the only child of N, or else CHILD = NULL indicates N has no
children.
1. [Initializes CHILD]

If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then:
Set CHILD := NULL.
Else if LEFT(LOC)  NULL, then :
Set CHILD := LEFT[LOC].
Else
Set CHILD := RIGHT[LOC].
[End of If structure.]

2. If PAR  NULL, then :
If LOC = LEFT[PAR], then :

Set LEFT[PAR] := CHILD.
Else :

Set RIGHT[PAR] := CHILD.

Data Structure 5–21 A (CS/IT-Sem-3)

[End of If structure.]
Else :

Set ROOT := CHILD.
[End of If structure.]

3. Return.

Que 5.17. Write procedure to delete an element from binary search

tree where node has two children.

Answer
CASEB(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
This procedure will delete the node N at location LOC, where N has two
children. The pointer PAR gives the location of the parent of N, or else PAR
= NULL indicates that N is the root node. The pointer SUC gives the
location of the inorder successor of N, and PARSUC gives the location of
the parent of the inorder successor.
1. [Find SUC and PARSUC]

a. Set PTR := RIGHT[LOC] and SAVE := LOC.
b. Repeat while LEFT[PTR]  NULL:

Set SAVE := PTR and PTR := LEFT[PTR].
[End of loop.]

c. Set SUC := PTR and PARSUC := SAVE.
2. [Delete inorder successor]

Call CASEA(INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).
3. [Replace node N by its inorder successor.]
a. If PAR  NULL, then:

If LOC = LEFT[PAR], then:
Set LEFT[PAR] := SUC.

Else :
Set RIGHT[PAR] := SUC

[End of If structure.]
Else :

Set ROOT := SUC.
[End of If structure.]

b. Set LEFT[SUC] := LEFT[LOC] and
RIGHT[SUC] := RIGHT[LOC].

4. Return.

Que 5.18. Write a procedure to search an element in the binary

search tree.

Answer
FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR)
A binary search tree T is the memory and an ITEM of information is given.
This procedure finds the location LOC of ITEM in T and also the location
PAR of the parent of ITEM. There are three special cases :

5–22 A (CS/IT-Sem-3) Trees

i. LOC = NULL and PAR = NULL will indicate that the tree is empty.
ii. LOC  NULL and PAR = NULL will indicate that ITEM is the root of T.
iii. LOC = NULL and PAR  NULL will indicate that ITEM is not in T and

can be added to T as a child of the node N with location PAR.
1. [Tree empty ?]

If ROOT = NULL, then: Set LOC := NULL and PAR := NULL, and
Return.

2. [ITEM at root ?]
If ITEM = INFO[ROOT], then: Set LOC := ROOT and PAR := NULL,
and Return.

3. [Initialize pointers PTR and SAVE.]
If ITEM < INFO[ROOT], then:

Set PTR := LEFT[ROOT] and SAVE := ROOT.
Else :

Set PTR := RIGHT[ROOT] and SAVE := ROOT.
[End of If structure.]

4. Repeart steps 5 and 6 while PTR  NULL:
5. [ITEM found ?]

If ITEM = INFO[PTR], then: Set LOC := PTR and PAR := SAVE, and
Return.

6. If ITEM < INFO[PTR], then:
Set SAVE := PTR and PTR := LEFT[PTR].

Else :
Set SAVE := PTR and PTR := RIGHT[PTR].

[End of If structure]
[End of step 4 loop.]

7. [Search unsuccessful.] Set LOC := NULL and PAR := SAVE.
8. Exit.

Threaded Binary Trees, Traversing Threaded Binary Trees,
Huffman Coding using Binary Tree.

PART-5

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.19. What is a threaded binary tree ? Explain the advantages

of using a threaded binary tree. AKTU 2017-18, Marks 07

Data Structure 5–23 A (CS/IT-Sem-3)

Answer

Threaded binary tree is a binary tree in which all left child pointers that are
NULL points to its inorder predecessor and all right child pointers that are
NULL points to its inorder successor.

A

B C

F G D E

H

Null Null Null Null

Null

(a) Right threaded binary tree.

A

B C

F G D E

H

Null Null

Null

Null Null

(b) Left threaded binary tree

A

B C

F G D E

H

NullNull

(c) Fully threaded binary tree

Fig. 5.19.1.

Advantages of using threaded binary tree :
1. In threaded binary tree the traversal operations are very fast.

5–24 A (CS/IT-Sem-3) Trees

2. In threaded binary tree, we do not require stack to determine the
predecessor and successor node.

3. In a threaded binary tree, one can move in any direction i.e., upward or
downward because nodes are circularly linked.

4. Insertion into and deletions from a threaded tree are all although time
consuming operations but these are very easy to implement.

Que 5.20. Write algorithm/function for inorder traversal of

threaded binary tree.

Answer
Algorithm for inorder traversal in threaded binary tree :
1. Initialize current as root
2. While current is not NULL

If current does not have left child
a. Print current's data
b. Go to the right, i.e., current = current->right

Else
a. Make current as right child of the rightmost node in current’s

left subtree
b. Go to this left child, i.e., current = current->left

Que 5.21. What is Huffman tree ? Create a Huffman tree with

following numbers :

24, 55, 13, 67, 88, 36, 17, 61, 24, 76 AKTU 2014-15, Marks 10

Answer
Huffman tree is a binary tree in which each node in the tree represents a
symbol and each leaf represent a symbol of original alphabet.
Huffman algorithm :
1. Suppose, there are n weights W1, W2,, Wn.
2. Take two minimum weights among the n given weights. Suppose W1

and W2 are first two minimum weights then subtree will be :

W + W1 2

W 1 W2

Fig. 5.21.1.

3. Now the remaining weights will be W1 + W2, W3, W4,, Wn.
4. Create all subtree at the last weight.

Data Structure 5–25 A (CS/IT-Sem-3)

Numerical :

24 55 13 67 88 36 17 61 24 76
A B C D E F G H I J

, , , , , , , , ,

Arrange all the numbers in ascending order :

13 17 24 24 36 55 61 67 76 88
C G A I F B H D J E

, , , , , , , , ,

24 3024 36 55 61 67 76 88
A I F B H D J E

, ,, , , , ,

13 17
C G

,

4830 36 55 61 67 76 88
F B H D J E

, ,, , , ,

13 17
C G

,

24 24
A I

48 55 61 66 67 76 88
B H D J E

, , , , , ,

24 24
A I

30 36
F

13 17
C G

61 66 67 76 88 103
H D J E

, , , , ,

30 36
F

17
G

13
C

48 55
B

24
I

24
A

67 76 88 103 127
D J E

, , , ,

24
I

24
A

55
B

48 6661
H

36
F

30

17
G

13
C

5–26 A (CS/IT-Sem-3) Trees

88 103 127 143
E

, ,

24
I

24
A

55
B

48 6661 67 76
H D J

36
F

30

17
G

13
C

,

103127 143 ,

24
I

24
A

55
B

486661 67 76
H D J

36
F

30

17
G

13
C

,

191

88
E

143127

,

17
G

13
C

36
F

30

10388
E

55
B

48

24
I

24
A

270191

76
J

67
D

6661
H

191

24
I

24
A

55
B

48

143127

36
F

30

17
G

13
C

461

270

10388
E

6661
H

76
J

67
D

Data Structure 5–27 A (CS/IT-Sem-3)

Que 5.22. Explain Huffman algorithm. Construct Huffman tree

for MAHARASHTRA with its optimal code.

AKTU 2018-19, Marks 07

Answer

Huffman algorithm : Refer Q. 5.21, Page 5–24A, Unit-5.
Numerical :

M

1

A

4

H

2

R

2

S

1

T

1
, , , , ,

Arrange all the number in ascending order.
M

1

S

1

T

1

H

2

R

2

A

4
, , , , ,

T

1
2

H

2

R

2

A

4
, , , ,

M

1

S

1

H

2

R

2
, , 3

2T

1
M

1

S

1

A

4
,

3

2T

1
M

1

S

1

4

H

2

R

2

, , A

4

5–28 A (CS/IT-Sem-3) Trees

A

4
4

H

2

R

2

,
7

3

T

1

2

M

1

S

1

11

7

43

A

4

2T

1

M

1

S

1

H

2

R

2

0 1

0 1

0 1

0 110

Character Code

M 1010

A 0

H 110

R 111

S 1011

T 100

Optimal code for MAHARASHTRA is :

101001100111010111101001110

Concept and Basic Operation for AVL Tree, B tree and Binary
Heaps.

PART-6

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.23. Define AVL trees. Explain its rotation operations with

example. Construct an AVL tree with the values 10 to 1 numbers

into an initially empty tree. AKTU 2016-17, Marks 15

Data Structure 5–29 A (CS/IT-Sem-3)

Answer

i. An AVL (or height balanced) tree is a balanced binary search tree.

ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of left and
right subtrees of that node.

Balance factor = height of left subtree – height of right subtree

iv. In order to balance a tree, there are four cases of rotations :

1. Left Left rotation (LL rotation) : In LL rotation every node moves
one position to left from the current position.

1

3

2
0

–1

–2
Insert 1, 2 and 3

Tree is unbalanced

1

3

2
0

–1

–2

1

2

3
00

0

To make tree balance we
use LL rotation which
moves nodes one position
to left

After LL rotation
tree is balanced

Fig. 5.23.1.

2. Right Right rotation (RR rotation) : In RR rotation every node
moves one position to right from the current position.

3

2

1

2

1

0

Insert 3, 2 and 1

3

2

1

2

1

0

2

1 3
0

0

0

Tree is unbalanced
because node 3 has
balance factor 2

To make tree balance we
use RR rotation which
moves nodes one position
to right

After RR Rotation
tree is balanced

Fig. 5.23.2.
3. Left Right rotation (LR rotation) : The LR Rotation is combination

of single left rotation followed by single right rotation. In LR rotation,
first every node moves one position to left then one position to right
from the current position.

5–30 A (CS/IT-Sem-3) Trees

3

3

1

2

2

–1

0

Insert 3, 1 and 2

3

2

1

2

–1

0

3

2

1

2

1

0

2

31
00

0

Tree is unbalanced
because node 3 has
balanced factor 2

LL rotation RR rotation After LR rotation
tree is balanced

After RR rotation
After LL rotation

Fig. 5.23.3.
4. Right Left rotation (RL rotation) : The RL rotation is the combination

of single right rotation followed by single left rotation. In RL rotation,
first every node moves one position to right then one position to left
from the current position.

2

3

1
–2

1

0

Insert 1, 3 and 2

1

3

2

1

2

3
0

–1

–2

2

31
00

0

0

Tree is unbalanced
because node 1 has
balance factor –2

RR rotation LL rotation After RL rotation
tree is balanced

After LL
rotation

After RR
rotation

Fig. 5.23.4.
Numerical :
Insert 10 :

10
0

Insert 9 :

10
1

9
0

Insert 8 :

10

2

9
1

8

0

9

1

8
0

10
0LL

rotation

Insert 7 :

9

1

8

1

7

0
10

0

Data Structure 5–31 A (CS/IT-Sem-3)

Insert 6 :

9

2

8

2

7

1
10

0

6

0

9

1

7

0
10

0

6

0

8

0

LL

rotation

Insert 5 :

9

2

7

1

6

1
10

0

5

0
8

0 9

0

8

0

10

0

5

1

0
6

7

0

LL

rotation

Insert 4 :

7

1

6

2

5

1
9

0

4

0
8

0

10

0
9

0

8

0

10

0
5

0

4

0

6

0

7

0

LL

rotation

Insert 3 :

9

0

8

0

10

0
5

1

4

1

6

0

7

1

3

0

Insert 2 :

9

0

8

0

10

0
5

2

4

2

6

0

7

2

3

1

2

0

9

0

8

0

10

0
5

1

3

0

6

7

1

2

0
4

0

LL

rotation

5–32 A (CS/IT-Sem-3) Trees

Insert 1 :

9

0

8

0
10

03

0

2

1

5

7

1

1

0
6

0

4

0

0

9

0

8

0

10

0
5

2

3

1

6

0

7

2

2

1

1

0
4

LL

rotation

Que 5.24. Consider the following AVL tree and insert 2, 12, 7 and 10

as new node. Show proper rotation to maintain the tree as AVL.

5

8

6 10

4 7
9 11

3

Fig. 5.24.1.

AKTU 2017-18, Marks 07

Answer

Given tree :

– 1

– 1

0

0

5

8

6 10

4 7
9 11

3

Balanced tree

Data Structure 5–33 A (CS/IT-Sem-3)

Insert 2 :
8

6
10

4
7 9 11

3 5

– 2

+ 2

1

0

2

1

Tree is unbalanced, now LL rotation is required to balance it.

8

4 10

1196

7

3

2

+ 1

01

00

0 0

0

0 5
0

Now the tree is balanced.
Insert 12 :

8

4 10

11963

2

0

0
1

– 10

0 – 1

7
0

5
0

0 12
0

Tree is balanced, so there is no need to balance the tree.
Insert 7 : 7 is already in the tree hence it cannot be inserted in the AVL tree.
Insert 10 : 10 is also in the tree hence it cannot be inserted in the AVL tree.

Que 5.25. What is height balanced tree ? Why height balancing of

tree is required ? Create an AVL tree for the following elements : a,

z, b, y, c, x, d, w, e, v, f. AKTU 2018-19, Marks 07

5–34 A (CS/IT-Sem-3) Trees

Answer

Height balanced tree : Refer Q. 5.23, Page 5–28A, Unit-5.
Height balancing of tree is required : Height balancing of tree is
required to implement an AVL tree. Each node must contain a balance
factor, which indicates its states of balance relative to its sub-tree.
Numerical :
Insert a :

a
0

Insert z :

a

z

–1

0

Insert b :

a z

b
0

0RL rotation
a

z

–2

1

b0

0

Insert y :

a z

b
– 1

0 1

y 0
Insert c :

a y

b
– 1

0RR rotation 0
a z

b
– 2

0 2

y 1

c
0

c z0
0

Insert x :

b y

c
1RL rotation 0

a y

b
– 2

0 1

c
x z0

0– 1
z

0

a
0

x
0

Data Structure 5–35 A (CS/IT-Sem-3)

Insert d :

b y

c
– 1

1 1

x za
0

1
0

d 0

Insert w :

b d

c
1LR rotation 1

x z0 0

–1

a
0

b y

c
– 2

1 2

x za
0

2
0

d –1

w
0

w y
0 0

Insert e :

b d

c
0

x z
0

0

–1

a
0

w y
0 0

–1

e
0

Insert v :

x

RL rotationb y

c
– 2

1 1

x za
0

1
1

w y
01

v
0

c
0

c
0

db
1

a
0

–1

e0

0

w

yv
1

z0

0

–1

5–36 A (CS/IT-Sem-3) Trees

Insert f :

x

c

db
1

a
0

–1

e

w

yv

z
0

0

–1–1

–1

–1

f
0

1

No, rebalancing required. So, this is final AVL search tree.

Que 5.26. Construct a height balanced binary search tree by
performing following operations :
Step 1 : Insert
19, 16, 21, 11, 17, 25, 6, 13
Step 2 : Insert
3
Step 3 : Delete

16 AKTU 2014-15, Marks 10

Answer
Step 1 : Insert 19, 16, 21, 11, 17, 25, 6, 13 :
Insert 19 :

19

Insert 16 :

19

16
0

1

1
Insert 21 :

19

16 21

0

0 0

Insert 11 :

11

0

19

16 21

1 0

Data Structure 5–37 A (CS/IT-Sem-3)

Insert 17 :

19

16 21

1

0 0

11 17

0 0

Insert 25 :

19

16 21

0

0 – 1

11 17

0 0

25

0

Insert 6 :

16

11

1

6

0

19

21

1

1 – 1

17

0

25

0

Insert 13 :

19

16 21

1

1 – 1

11 17

0 0

25

0

6

0

13

0

5–38 A (CS/IT-Sem-3) Trees

Step 2 : Insert 3 :

19

16 21

2

2 – 1

11 17

1 0

25

0

6

1

13

0

3

0

19

11 21

+ 1

0 – 1

6 16

1 0

25

0

3

0
13 17

0 0

LL Rotation

Step 3 : Delete 16 :

19

11 21

+ 1

0 – 1

6 13

+ 1 – 1

25

0

3

0
17

0

Que 5.27. Describe all rotations in AVL tree. Construct AVL tree

from the following nodes : B, C, G, E, F, D, A.

AKTU 2015-16, Marks 10

Answer

AVL rotations : Refer Q. 5.23, Page 5–28A, Unit-5.

Construction of AVL tree : B, C, G, E, F, D, A

Insert B : B
0

Insert C :

B
–1

C
0

Insert G :

B
–2

C
–1

G
0

RR
B G

C
0

00

rotation

Data Structure 5–39 A (CS/IT-Sem-3)

Insert E :

B G

C
–1

10

E
0

Insert F :

B BG F

C C
–2 –1

2 00 0

E E
–1

G
0

0

B G

C

F

LR

0rotation

F E

RR

rotation

Insert D :

B CF F

C E
–2 0

1 –10 0

E G G
0 0

LR

1
B

0

0rotation
D

0

D
Insert A :

C

E
1

1

B
+1

D

A
0

–1

0

F

G
0

Que 5.28. Define a B-tree. What are the applications of B-tree ?

Draw a B-tree of order 4 by insertion of the following keys in order
: Z, U, A, I, W, L, P, X, C, J, D, M, T, B, Q, E, H, S, K, N, R, G, Y, F, O, V.

AKTU 2015-16, Marks 15
OR

Write a short notes on B-tree. AKTU 2014-15, Marks 05

Answer
B-tree :
1. A B-tree is a self-balancing tree data structure that keeps data sorted

and allows searches, sequential access, insertions, and deletions in
logarithmic time.

2. A B-tree of order m is a tree which satisfies the following properties :
a. Every node has at most m children.
b. Every non-leaf node (except root) has at least m/2 children.
c. The root has at least two children if it is not a leaf node.

5–40 A (CS/IT-Sem-3) Trees

d. A non-leaf node with k children contains k – 1 keys.
e. All leaves appear in the same level.
Application of B-tree : The main application of a B-tree is the organization
of a huge collection of records into a file structure. The organization should
be in such a way that any record in it can be searched very efficiently i.e.,
insertion, deletion and modification operations can be carried out perfectly
and efficiently.
Construction of B-tree :
Insert Z : Z

Insert U : U Z

Insert A : A U Z

Insert I : A I U Z

I

A U Z
Insert W :

I

A U W Z

Insert L :
I

A L U W Z

I

A W Z

U

L
Insert P :

I

A W Z

U

PL
Insert X :

I

A W X

U

PL Z
Insert C :

I

C W X

U

PL ZA
Insert J :

I

C W X

U

LJ ZA P

Data Structure 5–41 A (CS/IT-Sem-3)

Insert D :

I

D W X

U

J ZC L PA

Insert M :

I

D W X

U

J ZCA L M P

I

D W X

L

J ZC MA P

U

Insert T :

I

D W X

L

J ZC MA P

U

T

Insert B :

I

D W X

L

J ZC MB P

U

TA

I

D W X

L

J ZC M P

U

TA

B

I

B

A

L U

C D J M P T W X Z

Insert Q :
I

B

A

L U

C D J M P T W X Z

I

B

A

L U

C D J M P Q W X ZT

5–42 A (CS/IT-Sem-3) Trees

Insert E :

I

B

A

L U

C D J M P Q W X ZT

Insert H :
I

B

A

L P

C D J M Q W X ZT

U

I

B

A

L P

C D J M Q W X ZT

U

E

Insert S :

I

B

A

L P

C D J M Q W X ZT

U

E H

Insert K :

I

B

A

L P

C J M Q W X ZT

U

E H

D

Insert N, R :

I

B

A

L P

C J M Q W X ZS

U

E H

D

T

Data Structure 5–43 A (CS/IT-Sem-3)

I

B

A

L P

C J M Q W X ZS

U

E H

D

T

B

A C K M Q W X ZE H

D

SJ N T

R U

I P

L

Insert G, Y :

B

A C K M Q W X YE G

D

SJ N T

R U

I P

L

ZH

B

A C K M Q W YE G

D

SJ N T

R U

I P

L

ZH

X

Insert F, O & V :

B

A C K M Q V YE F

D

SJ N T

R U

I P

L

ZG

X

H O W

B

A C K M Q V YE

D

SJ N T

R U

I P

L

ZG

X

H O W

F

Que 5.29. Construct a B-tree of order 5 created by inserting the

following elements 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24,
25, 19. Also delete elements 6, 23 and 3 from the constructed tree.

AKTU 2018-19, Marks 07

5–44 A (CS/IT-Sem-3) Trees

Answer

Insert 3 : 3

Insert 14 : 3 14

Insert 7 : 3 7 14

Insert 1 : 1 3 7 14

Insert 8 :

8

1 3 7 14

Insert 5 :

8

1 3 5 147

Insert 11 :

8

1 3 5 117 14

Insert 17 :

8

1 3 5 117 14 17

Insert 13 :

8

1 3 5 117 13 14 17

Insert 6 :

8

1 3 5 117 13 14 17

6

Insert 23 :

8

1 3 5 117 13 17 23

6 14

Data Structure 5–45 A (CS/IT-Sem-3)

Insert 12 :

8

1 3 5 117 12 17 23

6 14

13

Insert 20 :

8

1 3 5 117 12 17 20

6 14

13 23

Insert 26 :

8

1 3 5 117 12 17 20

6 14

13 23 26

Insert 4 :

8

1 3 4 117 12 17 20

6 14

13 23 265

Insert 16 :

8

1 3 4 117 12 16 17

6 14

13 23 265

20

Insert 18, 24, 25 :

8

1 3 4 117 12 16 17

6 14

13 23 245

20

18 25 26

Insert 19 :

8

1 3 4 117 12 16 17

6 14

13 23 245

20

18 25 2619

Delete 6 :

8

1 3 4 117 12 16 17

5 14

13 23 24

20

18 25 2619

5–46 A (CS/IT-Sem-3) Trees

Delete 23 :

8

1 3 4 117 12 16 17

5 14

13 24

20

18 25 2619

Delete 3 :

8

1 4 117 12 16 17

5 14

13 24

20

18 25 2619

Que 5.30. Construct a B-tree on following sequence of inputs.

10, 20, 30, 40, 50, 60, 70, 80, 90
Assume that the order of the B-tree is 3.

AKTU 2017-18, Marks 07

Answer

10, 20, 30, 40, 50, 60, 70, 80, 90

Order of the B-tree is 3.

1. Insert 10 :

10

2. Insert 20 :

10 20

3. Insert 30 :

20

10 30

4. Insert 40 :

20

10 30 40

Data Structure 5–47 A (CS/IT-Sem-3)

5. Insert 50 : 6. Insert 60 :
20

30 50

10 40

20

30 50

10 40

60
7. Insert 70 : 8. Insert 80 :

20

30 60

10 40

50 70

20

30 60

10 40

50 70 80
9. Insert 90 :

20

30 60

10 40

50 80

70 90
This is final B-tree of order 3.

Que 5.31. Compare and contrast the difference between B+ tree

index files and B-tree index files with an example.

AKTU 2016-17, Marks 10

5–48 A (CS/IT-Sem-3) Trees

1. Definition

2. Space
complexity

3. Storage

4. Data

5. Space

6. Function of leaf
nodes

7. Searching

8. Search
accessibility

9. Redundant
key

A B-tree is an
organizational structure
for information storage
and retrieval in the form
of a tree in which all
terminal nodes are at the
same distance from the
base, and all non-terminal
nodes have between n and
2n sub-trees or pointers
(where n is an integer).

O(n)

In a B-tree, search keys
and data are stored in
internal or leaf nodes.

The leaf nodes of the tree
store pointers to records
rather than actual records.

These trees waste space.

In B-tree, the leaf node
cannot store using linked
list.

In B-tree, searching
becomes difficult as data
cannot be found in the leaf
node.

In B-tree, the search is not
that easy as compared to
a B+ tree.

They do not store
redundant search key.

B+ tree is an n-array tree
with a variable but often
large number of children
per node. A B+ tree
consists of a root, internal
nodes and leaves. The root
may be either a leaf or a
node with two or more
children.

O(n)

In a B+ tree, data is stored
only in leaf nodes.

The leaf nodes of the tree
store the actual record
rather than pointers to
records.

These trees do not waste
space.

In B+ tree, leaf node data
are ordered in a
sequential linked list.

In B+ tree, searching of any
data is very easy because
all data is found in leaf
nodes.

In B+ tree, the searching
becomes easy.

They store redundant
search key.

Answer

S. No. Basis B+ tree B-tree

Example :

3 5

1 2 6 4 8 9

3 5

1 2 6 4 8 9

B tree :+ B-tree :

Data Structure 5–49 A (CS/IT-Sem-3)

Que 5.32. Write a short note on binary heaps.

Answer

1. The binary heap data structure is an array that can be viewed as a
complete binary tree.

2. Each node of the binary tree corresponds to an element of the array.
3. The array is completely filled on all levels except possibly lowest.
4. We represent heaps in level order, going from left to right.
5. If an array A contains key values of nodes in a heap, length [A] is the

total number of elements.
Heap-size [A] = Length [A] = Number of elements.

6. The root of the tree A[1] and given index i of a node the indices of its
parent, left child and right child can be computed :

PARENT (i)
return floor (i/2)
LEFT(i)
return 2i
RIGHT (i)
return 2i + 1

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. Write a C program to implement binary tree insertion,
deletion with example.

Ans. Refer Q. 5.5.

Q. 2. Write the C program for various traversing techniques of
binary tree with neat example.

Ans. Refer Q. 5.6.

Q. 3. Explain binary search tree and its operations. Make a binary
search tree for the following sequence of numbers, show all
steps : 45, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11, 50, 10.

Ans. Refer Q. 5.7.

Q. 4. Define binary search tree. Create BST for the following
data, show all steps :
20, 10, 25, 5, 15, 22, 30, 3, 14, 13

Ans. Refer Q. 5.8.

5–50 A (CS/IT-Sem-3) Trees

Q. 5. Define tree, binary tree, complete binary tree and full binary
tree. Write algorithm or function to obtain traversals of a
binary tree in preorder, postorder and inorder.

Ans. Refer Q. 5.10.

Q. 6. Construct a binary tree for the following :
Inorder : Q, B, K, C, F, A, G, P, E, D, H, R
Preorder : G, B, Q, A, C, K, F, P, D, E, R, H
Find the postorder of the tree.

Ans. Refer Q. 5.11.

Q. 7. Draw a binary tree with following traversal :
Inorder : D B H E A I F J C G
Preorder : A B D E H C F I J G

Ans. Refer Q. 5.12.

Q. 8. Draw a binary tree with following traversals :
Inorder : B C A E G D H F I J
Preorder : A B C D E F G H I J

Ans. Refer Q. 5.13.

Q. 9. What is a threaded binary tree ? Explain the advantages of
using a threaded binary tree.

Ans. Refer Q. 5.19.

Q. 10. What is Huffman tree ? Create a Huffman tree with
following numbers :
24, 55, 13, 67, 88, 36, 17, 61, 24, 76

Ans. Refer Q. 5.21.

Q. 11. Explain Huffman algorithm. Construct Huffman tree for
MAHARASHTRA with its optimal code.

Ans. Refer Q. 5.22.

Q. 12. Define AVL trees. Explain its rotation operations with
example. Construct an AVL tree with the values 10 to 1
numbers into an initially empty tree.

Ans. Refer Q. 5.23.

Q. 13. Consider the following AVL tree and insert 2, 12, 7 and 10 as
new node. Show proper rotation to maintain the tree as
AVL.

Data Structure 5–51 A (CS/IT-Sem-3)

5

8

6 10

4 7
9 11

3

Fig. 5.24.1.

Ans. Refer Q. 5.24.

Q. 14. Construct a height balanced binary search tree by
performing following operations :
Step 1 : Insert
19, 16, 21, 11, 17, 25, 6, 13
Step 2 : Insert
3
Step 3 : Delete
16

Ans. Refer Q. 5.26.

Q. 15. What is height balanced tree ? Why height balancing of tree
is required ? Create an AVL tree for the following elements :
a, z, b, y, c, x, d, w, e, v, f.

Ans. Refer Q. 5.25.

Q. 16. Describe all rotations in AVL tree. Construct AVL tree from
the following nodes : B, C, G, E, F, D, A.

Ans. Refer Q. 5.27.

Q. 17. Define a B-tree. What are the applications of B-tree ? Draw
a B-tree of order 4 by insertion of the following keys in
order : Z, U, A, I, W, L, P, X, C, J, D, M, T, B, Q, E, H, S, K, N, R,
G, Y, F, O, V.

Ans. Refer Q. 5.28.

Q. 18. Construct a B-tree of order 5 created by inserting the
following elements 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4,
16, 18, 24, 25, 19. Also delete elements 6, 23 and 3 from the
constructed tree.

Ans. Refer Q. 5.29.

Q. 19. Construct a B-tree on following sequence of inputs.
10, 20, 30, 40, 50, 60, 70, 80, 90
Assume that the order of the B-tree is 3.

Ans. Refer Q. 5.30.



Data Structure SQ–1 A (CS/IT-Sem-3)

1.1. Define the term data structure. List some linear and non-
linear data structures stating the application area where

they will be used. AKTU 2017-18, Marks 02

Ans. It is a particular way of storing and organizing data in a computer so
that it can be used efficiently.
It can be classified into two types :

i. Linear data structures :
1. Array
2. Stacks
3. Queue
4. Linked list

ii. Non-linear data structures :
1. Tree
2. Graph

1.2. Name few terminologies used in data structure.
Ans. Few terminologies used in data structure are :

1. Data
2. Entity
3. Field
4. Record
5. File

1.3. What are the data types used in C ?
Ans. Data type used in C are :

1. Primitive data types
2. Non-primitive data types

1.4. Name some primitive data types.
Ans. Primitive data types are :

1. Integer data type
2. Floating point data type
3. Character data type
4. Void data type

1.5. Define an algorithm.

Array and Linked List
(2 Marks Questions)

1

SQ–2 A (CS/IT-Sem-3) 2 Marks Questions

Ans. An algorithm is a step-by-step finite sequence of instruction, to
solve a well-defined computational problem.

1.6. Give the criteria that an algorithm must satisfy.
Ans. Every algorithm must satisfy the following criteria :

1. Input
2. Output
3. Definiteness
4. Effectiveness
5. Finiteness

1.7. What are the characteristics of an algorithm ?
Ans. Characteristics of an algorithm are :

1. It should be free from ambiguity.
2. It should be concise.
3. It should be efficient.

1.8. What are the different ways of analyzing an algorithm ?
Ans. Different ways of analyzing an algorithm :

1. Worst case running time
2. Average case running time
3. Best case running time

1.9. Define complexity.
Ans. The complexity of an algorithm M is the function f(n) which gives

the running time and/or storage space requirement of the algorithm
in terms of the size n of the input data.

1.10. Define time complexity and space complexity of an

algorithm. AKTU 2016-17, Marks 02

Ans. Time complexity : Time complexity is the amount of time it needs
to run to completion.
Space complexity : Space complexity is the amount of memory it
needs to run to completion.

1.11. What are the various asymptotic notations ? Explain the

Big-Oh notation. AKTU 2015-16, Marks 02

Ans. Various asymptotic notations are :
1. Theta notation (- notation)
2. Big-Oh (O - notation)
3. Omega notation ( - notation)

Big-Oh notation : It is used when there is only an asymptotic
upper bound. For a given function g(n), O(g(n)) is denoted by a set
of functions.

Data Structure SQ–3 A (CS/IT-Sem-3)

1. It is a data structure whose
elements form a sequence.

2. Every element in the
structure has a unique
predecessor and unique
successor.

3. Examples of linear data
structure are arrays, linked
lists, stacks and queues.

It is a data structure whose
elements do not form a sequence.

There is no unique predecessor or
unique successor.

Examples of non-linear data
structures are trees and graphs.

1.12. Define time-space tradeoff.
Ans. The time-space tradeoff refers to a choice between algorithmic

solutions of data processing problems that allows to decrease the
running time of an algorithmic solution by increasing the space to
store data and vice versa.

1.13. Write down the properties of Abstract Data Type (ADT).
Ans. Properties of Abstract Data Type (ADT) :

i. It is used to simplify the description of abstract algorithm to classify
and evaluate data structure.

ii. It is an important conceptual tool in OOPs and design by contract
methodologies for software development.

1.14. Differentiate linear and non-linear data structures.

AKTU 2016-17, Marks 02

Ans.

S. No. Linear data structure Non-linear data structure

1.15. What do you mean by an array ?
Ans. An array is a list of finite number of elements of same data type i.e.,

integer, real or strings.

1.16. What are the merits and demerits of array data

structures ? AKTU 2016-17, Marks 02

Ans. Merits of array :
1. Array is a collection of elements of similar data type.
2. Hence, multiple applications that require multiple data of same

data type are represented by a single name.
Demerits of array :

1. Linear arrays are static structures, i.e., memory used by them
cannot be reduced or extended.

2. Previous knowledge of number of elements in the array is
necessary.

SQ–4 A (CS/IT-Sem-3) 2 Marks Questions

1. Overflow condition occurs in
linked list when data are
inserted into a list but there
is no available space.

2. In linked list overflow occurs
when AVAIL = NULL and
there is an insertion
operation.

Underflow condition occurs when
we delete data from empty linked
list.

In linked list underflow occurs when
START = NULL and there is a
deletion operation.

1. Array can be initialized at
definition.

2. Static in nature.

3. It cannot be resized.

Pointer cannot be initialized at
definition.

Dynamic in nature.

It can be resized.

1.17. Define pointer.
Ans. Pointers are variable which can hold the address of another variable.

Some of the examples of pointer declarations are :
int * ptr1;
float * ptr2;
unsigned int * ptr3;

1.18. Differentiate between array and pointer.
Ans.

S. No. Array Pointer

1.19. Differentiate between overflow and underflow condition in

a linked list. AKTU 2018-19, Marks 02

Ans.

S. No. Overflow Underflow

1.20. Write a function to reverse the list.
Ans. node * reverse (node * p){

node *q, *r;
q = (node*) NULL;
while (p != NULL)
{
r = q;
q = p;
p = p  next;
p  next = r;
}
return(q);
}

Data Structure SQ–5 A (CS/IT-Sem-3)

1.21. Given a 2D array A [– 100 : 100, – 5 : 50]. Find the address of
element A [99, 49] considering the base address 10 and each
element requires 4 bytes for storage. Follow row major order.

AKTU 2015-16, Marks 02

Ans. LOC(A[i][j]) =Base (A) + w [n (i – lower bound for row index) +
(j – lower bound for column index))
LOC (A[99][49]) = 10 + 4 [50 (99 – (– 100) + 49 – (– 5)]

= 10 + 4 [50 (199) + 54] = 40026

1.22. Explain the application of sparse matrices.

AKTU 2015-16, Marks 02

Ans. There are two applications of sparse matrix which are :
1. Triangular matrix : In this, all entries above the main diagonal

are zero or, equivalently, where non-zero entries can only occur on
or below the main diagonal.

2. Tridiagonal matrix : In this, all non-zero entries can occur only
on the diagonal or on elements immediately above or below the
diagonal.



SQ–6 A (CS/IT-Sem-3) 2 Marks Questions

2.1. What are the applications of stack ?
Ans. Applications of stack are :

i. Infix to postfix conversion.
ii. Implementing function calls.

iii. Page-visited history in a web browser.
iv. Undo sequence in a text editor.

2.2. Mention the limitations of stack using array.
Ans. Limitations of stacks using array :

i. The maximum size of the stack once defined cannot be changed.
ii. Trying to push a new element into a full stack causes an overflow

condition.
2.3. What are the notations used in evaluation of arithmetic

expressions using prefix and postfix forms ?

AKTU 2015-16, Marks 02

Ans. Notations used in evaluation of arithmetic expressions are :
i. Infix notation : In this notation, the operator symbol is placed

between its two operands.
For example : To add A to B we can write as, A + B or B + A

ii. Polish (Prefix) notation : Here the operator symbol is placed
before its two operands.
For example : To add A to B we can write as, + AB or + BA

iii. Reverse polish (Postfix) notation : In this notation, the operator
symbol is placed after its two operands.
For example : To add A and B we can write as : AB+ or BA+

2.4. If the Tower of Hanoi is operated on n = 10 disks, calculate

the total number of moves. AKTU 2015-16, Marks 02
OR

Calculate total number of moves for Tower of Hanoi for

n = 10 disks. AKTU 2017-18, Marks 02

Ans. For n number of disks, total number of moves = 2n – 1
For 10 disks, i.e., n = 10, total number of moves = 210 – 1

= 1024 – 1
= 1023

Therefore, if the Tower of Hanoi is operated on n = 10 disks, then
total number of moves are 1023.

Stacks and Queues
(2 Marks Questions)

2

Data Structure SQ–7 A (CS/IT-Sem-3)

i. It is a process of executing
statement until some
specified condition is
satisfied.

ii. Iterative counterpart of a
problem is more efficient
in term of memory
utilization and execution
speed.

It is a technique of defining
anything in terms of itself.

It is a worse option to go for simple
problems.

2.5. Give the infix, postfix and prefix notation of (A + B) + C.
Ans. Infix notation : (A + B) + C

Postfix notation : (AB) ++ C = AB + C +
Prefix notation : + AB + C = ++ ABC

2.6. How do you push elements in a linked stack ?

AKTU 2016-17, Marks 02

Ans. To insert an element onto stack is known as PUSH operation.
Before inserting first we increase the top pointer and then insert
the element.

2.7. Differentiate between iteration and recursion.
Ans.

S. No. Iteration Recursion

2.8. Discuss the steps for converting an infix expression to
postfix expression.

Ans. Steps for converting an infix expression to postfix
expression :

i. Parenthesize the expression starting from left to right.
ii. During parenthesizing the expression, the operands associated with

operator having higher precedence are first parenthesized.
iii. Once the expression is converted to postfix then remove the

parenthesis.

2.9. Write some applications of queue.
Ans. Application of queues are :

i. Operating systems schedule jobs in the order of arrival.
ii. Simulation of real world queues such as lines at a ticket counter.

iii. Multiprogramming.
iv. Waiting times for customers at call center.

2.10. Translate infix expression into its equivalent postfix
expression : A * (B + D)/E – F * (G + H/K).

AKTU 2015-16, Marks 02

Ans. Infix expression : A * (B + D)/E – F * (G + H/K)
A * (BD +)/E – F * (G + HK/)

SQ–8 A (CS/IT-Sem-3) 2 Marks Questions

i. A stack is logically a LIFO
type of list.

ii. No element other than the
top of stack element is
visible.

A queue is logically a FIFO type of
list.

No element other than front and
rear element are visible.

A (BD +)*/E – F* (GHK/+)
(ABD + * E/) – (FGHK/+*)
ABD + * E/FGHK / + * –
Equivalent postfix expression is :
ABD + * E/FGHK / + * –

2.11. Convert the following arithmetic infix expression into its
equivalent postfix expression.

Expression : A – B/C + D*E + F AKTU 2017-18, Marks 02

Ans. (A – B/C + D*E + F)

Character Stack Postfix

((
A (A
– (– A
B (– AB
/ (– / AB
C (– / ABC
+ (– + ABC /
D (– + ABC / D
* (– + * ABC / D
E (– + * ABC /DE
+ (– ++ ABC / DE*
F (– ++ ABC / DE*F
) (ABC / DE*F ++ –

2.12. Write the difference between stack and queue.
Ans.

S. No. Stack Queue

2.13. What are the advantages of queue over stack ?
Ans. Advantages of queue over stack are :

i. An element that is inserted first in the queue will be the first
element to be removed.

ii. Insertion and deletion, both are possible only on one end in stack.
While in queue elements are inserted at one end and elements are
deleted at other end.

2.14. Write down the limitations of circular queue.

Data Structure SQ–9 A (CS/IT-Sem-3)

Ans. Limitations of circular queue are :
i. We cannot distinguish between full and empty queue.
ii. Front and rear indices are in exactly the same relative positions for

an empty and for a full queue.

2.15. What is the significance of priority queue ?

AKTU 2016-17, Marks 02

Ans. Priority queue is a data structure in which elements can be stored
as per their priorities. And therefore one can remove the elements
from such queue according to their priorities. Such type of queue is
useful to operating system in job scheduling algorithms.

2.16. Name the types of recursion.
Ans. Types of recursion are :

i. Direct recursion
ii. Indirect recursion

iii. Tail recursion
iv. Linear and tree recursion

2.17. Write the syntax to check whether a given circular queue is

full or empty. AKTU 2018-19, Marks 02
OR

Explain circular queue. What is the condition if circular

queue is full ? AKTU 2017-18, Marks 02

Ans. Circular queue : A circular queue is one in which the insertion of
a new element is done at the very first location of the queue if the
last location at the queue is full.

Syntax to check circular queue is full :
If ((front == MAX – 1) || (front == 0 && rear == MAX – 1))

Syntax to check circular queue is empty :
If (front == 0 && rear == – 1)

2.18. What is recursion ? Give disadvantages of recursion.

AKTU 2018-19, Marks 02

Ans. Recursion : Recursion is the process of expressing a function that
calls itself to perform specific operation.
Disadvantages of recursion :

1. Recursive solution is always logical and it is very difficult to trace,
debug and understand.

2. Recursion takes a lot of stack space, usually not considerable when
the program is small and running on a PC.

3. Recursion uses more processor time.



SQ–10 A (CS/IT-Sem-3) 2 Marks Questions

3.1. What do you mean by searching ?
Ans. Searching is a process of finding the location of given elements in

the linear arrays. The search is said to be successful if the given
element is found.

3.2. Name two searching techniques.
Ans. Two searching techniques are :

1. Linear (sequential) search
2. Binary search

3.3. Define sequential search.
Ans. In sequential search, each element of an array is read one-by-one

sequentially and it is compared with the desired element.

3.4. Define index sequential search.
Ans. In index sequential search, an index file is created, that contains

some specific group or division of required record when the index is
obtained, then the partial indexing takes place as it is loaded in a
specific group.

3.5. What do you mean by hashing ?
Ans. Hashing is a searching technique that is used to uniquely identify a

specific object from a group of similar objects.

3.6. Classify the hashing functions based on the various
methods by which the key value is found.

AKTU 2015-16, Marks 02

Ans. Hashing functions on various methods by which the key
value is founded are :

i. Division method ii. Multiplication method
iii. Mid square method iv. Folding method

3.7. What is collision ?
Ans. Collision is a situation which occur when we want to add a new

record R with key K to our file F, but the memory location address
H(k) is already occupied.

3.8. Discuss various collision resolution strategies for hash
table.

Searching and Sorting
(2 Marks Questions)

3

Data Structure SQ–11 A (CS/IT-Sem-3)

i. The internal sorting
resides in main memory.

ii. It is independent of time
to read/write a record.

External sorting resides in
secondary memory.

It is dependent on time.

Ans. Collision resolution strategies for hash table are :
i. Chaining method : It hold the address of a table element by using

h(K) = key% table slots.
ii. Open addressing method : In this, all the elements of the dynamic

sets are stored in hash table itself.

3.9. What is sorting ? How is sorting essential for database

applications ? AKTU 2016-17, Marks 02

Ans. Sorting : It is an operation which is used to put the elements of list
in a certain order. i.e., either in decreasing or increasing order.
Sorting essential for database applications : Sorting is easier
and faster to locate items in a sorted list than unsorted. Sorting
algorithms can be used in a program to sort an array for later
searching or writing out to an ordered file or report. Sorted arrays/
lists make it easier to find things more quickly.

3.10. What do you understand by stable and in-place sorting ?

AKTU 2018-19, Marks 02

Ans. Stable sorting : Stable sorting is an algorithm where two objects
with equal keys appear in the same order in sorted output as they
appear in the input unsorted array.
In-place sorting : An in-place sorting is an algorithm that does
not need an extra space and produces an output in the same memory
that contains the data by transforming the input ‘in-place’. However,
a small constant extra space used for variables is allowed.

3.11. Differentiate between internal and external sorting.
Ans.

S. No. Internal sorting External sorting

3.12. Give the worst case and best case time complexity of binary

search. AKTU 2016-17, Marks 02

Ans. Worst case : In each comparison, the size of the search area is
reduced by half. So, the efficiency of the binary search method at
the worst case is log2 n + 1, i.e., O(log2 n + 1) where n is the total
number of items that will be used for the binary search.
Best case : The best case of binary search occurs when the element
we are searching for is the middle element of the list/array because
in that case we will get the desired result in a single go. In this case,
the time complexity of the algorithm will be O(1).



SQ–12 A (CS/IT-Sem-3) 2 Marks Questions

4.1. What are the applications of graphs ?
Ans. Applications of graph are :

i. Representing relationship between components in electronic
circuits.

ii. Transportation network in highway network, flight network.
iii. Computer network in local area network.

4.2. Write down the applications of DFS.
Ans. Applications of DFS :

i. Topological sorting.
ii. Finding connected components.

iii. Finding strongly connected components.
iv. Solving puzzles such as mazes.

4.3. Write down the applications of BFS.
Ans. Applications of BFS :

i. Finding all nodes within one connected component.
ii. Finding the shortest path between two nodes.

4.4. Define connected and strongly connected graph.

AKTU 2015-16, Marks 02

Ans. Connected graph : A graph G is said to be connected if there is at
least one path between every pair of vertices in G.
Strongly connected graph : A graph G is said to be strongly
connected if there is at least one directed path from every vertex to
every other vertex.

4.5. What are the advantages of DFS over BFS ?
Ans. Advantages of DFS over BFS :

i. DFS has much lower memory requirement than BFS.
ii. DFS is better than BFS if the solution is at maximum depth.

4.6. How the graph can be represented in memory ? Explain

with suitable example. AKTU 2018-19, Marks 02
OR

List the different types of representation of graphs.

AKTU 2017-18, Marks 02

Graphs
(2 Marks Questions)

4

Data Structure SQ–13 A (CS/IT-Sem-3)

Ans. Graph can be represented in memory using :
1. Matrix representation
2. Linked representation

For example : Consider the following directed graph :
v1 v4

v3v2

Fig. 1.
Matrix representation :

1 2 3 4

1

2

3

4

0 0 0 1
1 0 1 0
0 0 0 1
0 1 0 0

v v v v

v
v
v
v

 
 
 
 
 
 

Linked representation :

v1

/

/

/

v2

v3

v4

v4

v1

v4

v2

v3

/

Fig. 2.
4.7. Discuss the disadvantages of Dijkstra’s algorithm.

Ans. Disadvantages of Dijkstra’s algorithm are :
i. It does a blind search thereby consuming a lot of time and wasting

necessarily resource.
ii. It cannot handle negative edges. This leads to acyclic graphs.

4.8. How many ways are there to implement Kruskal’s
algorithm ?

Ans. Ways to implement Kruskal’s algorithm :
i. By using disjoint sets : Using UNION and FIND operation.
ii. By using priority queue : Maintains weights in priority queue.

4.9. How Prim’s algorithm is similar to Dijkstra’s algorithm ?
Ans.

i. Similar to Dijkstra algorithm, in Prim’s algorithm we also keep
distance values and paths in distance table.

ii. The implementation of Prim’s algorithm is identical to that of
Dijkstra’s algorithm so the running time is O(|V|2) without heaps
and O(E log V) using binary heaps.

SQ–14 A (CS/IT-Sem-3) 2 Marks Questions

4.10. Prove that the number of odd degree vertices in a connected

graph should be even. AKTU 2016-17, Marks 02

Ans. Let V1 and V2 be the set of vertices of even and odd degrees
respectively. Thus, V1  V2 =  and V1  V2 = V.

By Handshaking theorem,

2|E| = deg()
v V

v

 =

1

deg()
v V

v

 +

2

deg()
v V

v



As both 2|E| and
1

deg()
v V

v

 are even. So,

2

deg()
v V

v

 must be

even.
Since, deg(v) is odd for all v  V2. So, the number of odd degree
vertices in a connected graph must be even.

4.11. Number of nodes in a complete tree is 100000. Find its depth.

AKTU 2018-19, Marks 02

Ans. Number of nodes in a complete tree = 100000
We know that, n = 2h + 1 – 1

(n + 1) = 2h + 1

log2(n + 1) = h + 1
log2(n + 1) – 1 = h

Putting n = 100000
h = log2(100000 + 1) – 1
h = 15 (approx)



Data Structure SQ–15 A (CS/IT-Sem-3)

5.1. Define tree.
Ans. A tree T is a finite non-empty set of elements. One of these elements

is called the root, and the remaining elements, if any is partitioned
into trees is called subtree of T. A tree is a non-linear data structure.

5.2. Define the depth of a node.
Ans. The depth of a node is the length of the path from the root to the

node. A (rooted) tree with only one node (the root) has a depth of
zero.

5.3. Describe the properties of binary tree.
Ans. Properties of binary tree are :

i. The number of nodes n in a full binary tree is 2n+1 – 1.
ii. The number of leaf nodes in a full binary tree is 2h where h is the

height.
iii. The number of NULL links in a complete binary tree of n nodes is

n + 1.

5.4. Define complete binary tree. Give example.

AKTU 2016-17, Marks 02

Ans. A tree is called complete binary tree if tree satisfies following
conditions :

1. Each node has exactly two children except leaf node.
2. All leaf nodes are at same level.
3. If a binary tree contains m nodes at level l, it contains at most 2m

nodes at level l + 1.
Example :

A

B

D E

H I J K

C

F G

L M N O

Fig. 1.
5.5. For tree construction which is the suitable and efficient

data structure and why ? AKTU 2015-16, Marks 02

Trees
(2 Marks Questions)

5

SQ–16 A (CS/IT-Sem-3) 2 Marks Questions

Ans. Linked list is the most suitable and efficient data structure because
it is easily accessible due to the concept of pointer used in it.

5.6. Discuss the concept of “successor” and “predecessor” in

binary search tree. AKTU 2017-18, Marks 02

Ans. In binary search tree, if a node X has two children, then its
predecessor is the maximum value in its left subtree and its successor
is the minimum value in its right subtree.

5.7. Explain height balanced tree. List general cases to maintain

the height. AKTU 2017-18, Marks 02

Ans.
i. An AVL (or height balanced) tree is a balanced binary search tree.
ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of
left and right subtrees of that node.
Balance factor = height of left subtree – height of right subtree.
General cases to maintain the height are :

a. Left Left rotation (LL rotation)
b. Right Right rotation (RR rotation)
c. Left Right rotation (LR rotation) d. Right Left rotation (RL rotation)

5.8. Draw a binary tree for the expression : A * B – (C + D) * (P/Q)

AKTU 2018-19, Marks 02

Ans.
–

*

A B +

*

/

C D P Q

Fig. 2.

5.9. What is the maximum height of any AVL tree with 7 nodes ?

AKTU 2015-16, Marks 02

Ans. Maximum height of any AVL tree with 7 nodes is 3.

5.10. When does a graph become tree ?

AKTU 2016-17, Marks 02

Ans. A graph becomes a tree when there is exactly one path between
every pair of its vertices.

5.11. How can we traverse a binary tree ?
Ans. We can traverse a binary tree using :

1. Inorder traversing 2. Preorder traversing 3. Postorder traversing



Data Structure SP–1 A (CS/IT-Sem-3)

1. Attempt any four parts of the following : (5 × 4 = 20)
a. Define data structure. Describe about its need and types.

Why do we need a data type ?

b. Write difference between array and linked list.

c. What do you understand by complexity of an algorithm ?
Compute the worst case complexity for the following C
code :
main()
{
int s = 0, i, j, n;

for (j = 0; j < (3 * n); j++)
{
for (i = 0; i < n; i++)
{
s = s + i;
}
printf(“%d”, i);
}}

d. Write the difference between malloc() and calloc()
functions. Why do we use dynamic memory allocation ?

e. Write an algorithm or C code to insert a node in doubly
link list in beginning.

f. What is row-major order ? Explain with an example.

2. Attempt any four parts of the following : (5 × 4 = 20)
a. What is Tower of Hanoi problem ? Write the recursive code

in C language for the problem.

b. What is circular queue ? Write a C code to insert an element
in circular queue. Write all the condition for overflow.

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2014-15

DATA STRUCTURES USING C

Time : 3 Hours Max. Marks : 100

Solved Paper (2014-15)SP–2 A (CS/IT-Sem-3)

c. What is stack ? Implement stack with singly linked list.

d. Write the procedures for insertion, deletion and traversal
of a queue.

e. Write a function in C language to reverse a string using
stack.

f. Convert following infix expression into postfix expression
A + (B * C + D)/E.

3. Attempt any two parts of the following : (10 × 2 = 20)
a. Construct a height balanced binary search tree by

performing following operations :
Step 1 : Insert

19, 16, 21, 11, 17, 25, 6, 13
Step 2 : Insert

3
Step 3 : Delete

16

b. What is Huffman tree ? Create a Huffman tree with
following numbers :
24, 55, 13, 67, 88, 36, 17, 61, 24, 76

c. Define binary search tree. Create BST for the following
data, show all steps :
20, 10, 25, 5, 15, 22, 30, 3, 14, 13

4. Attempt any two parts of the following : (10 × 2 = 20)
a. Define spanning tree. Find the minimal spanning tree for

the following graph using Prim’s algorithm.

6 4 3

7 5 2

1

2 19

9

8
12

21

25 17

13

5

1

Fig. 1.

b. Find out the shortest path from node 1 to node 4 in a given
graph (Fig. 4) using Dijkstra shortest path algorithm.

Data Structure SP–3 A (CS/IT-Sem-3)

1

2

3

4

5

6

7

8

6

7

5

2

1

3

10

14

12

12
204

Fig. 2.

c. Write DFS algorithm to traverse a graph. Apply same
algorithm for the graph given in Fig. 5 by considering node
1 as starting node.

1

2

3

4

5

6

7

8

6

7

5

2

1

3

10

14

12

12
204

Fig. 3.

5. Attempt any two parts of the following : (10 × 2 = 20)
a. What do you mean by hashing and collision ? Discuss the

advantages and disadvantages of hashing over other
searching techniques.

b. Write an algorithm for merge sorting using the algorithm
sort in ascending order.
10, 25, 16, 5, 35, 48, 8

c. Write short notes on any three of the following :
i. B-tree

ii. Insertion sort
iii. Heap sort
iv. Garbage collection



Solved Paper (2014-15)SP–4 A (CS/IT-Sem-3)

1. An array is a list of finite
number of elements of same
data type i.e., integer, real
or string etc.

2. Elements can be accessed
randomly.

A linked list is a linear collection
of data elements called nodes
which are connected by links.

Elements cannot be accessed
randomly. It can be accessed only
sequentially.

SOLUTION OF PAPER (2014-15)

1. Attempt any four parts of the following : (5 × 4 = 20)
a. Define data structure. Describe about its need and types.

Why do we need a data type ?
Ans. Data structure :

1. A data structure is a way of organizing all data items that considers
not only the elements stored but also their relationship to each
other.

2. Data structure is the representation of the logical relationship
existing between individual elements of data.

3. Data structure is define as a mathematical or logical model of
particular organization of data items.
Data structure is needed because :

1. It helps to understand the relationship of one element with the
other.

2. It helps in the organization of all data items within the memory.
The data structures are divided into following categories :

1. Linear data structure :
a. A linear data structure is a data structure whose elements form a

sequence, and every element in the structure has a unique
predecessor and unique successor.

b. Examples of linear data structure are arrays, linked lists, stacks
and queues.

2. Non-linear data structure :
a. A non-linear data structure it is a data structure whose elements do not

form a sequence. There is no unique predecessor or unique successor.
b. Examples of non-linear data structures are trees and graphs.

Need of data type : The data type is needed because it determines
what type of information can be stored in the field and how the data
can be formatted.

b. Write difference between array and linked list.
Ans.

S. No. Array Linked list

Data Structure SP–5 A (CS/IT-Sem-3)

c. What do you understand by complexity of an algorithm ?
Compute the worst case complexity for the following C
code :
main()
{
int s = 0, i, j, n;

for (j = 0; j < (3 * n); j++)
{
for (i = 0; i < n; i++)
{
s = s + i;
}
printf(“%d”, i);
}}

Ans.
1. The complexity of an algorithm M is the function f(n) which gives

the running time and/or storage space requirement of the algorithm
in terms of the size n of the input data.

2. The storage space required by an algorithm is simply a multiple of
the data size n.
Worst case complexity : (n) + (3n) = (n)
The time complexity can be calculated by computing the frequency
count. This calculation is as follows :

3. Array is classified as :
a. 1-D array
b. 2-D array
c. n-D array

4. Each array element is
independent and does not
have a connection with
previous element or with its
location.

5. Array elements cannot be
added, deleted once it is
declared.

6. In array, elements can be
modified easily by
identifying the index value.

7. Pointer cannot be used in
array.

A linked list can be linear, doubly
or circular linked list.

Location or address of element is
stored in the link part of previous
element or node.

The nodes in the linked list can be
added and deleted from the list.

In linked list, modifying the node
is a complex process.

Pointers are used in linked list.

Solved Paper (2014-15)SP–6 A (CS/IT-Sem-3)

1. It takes single argument.

2. Does not initialize the
allocated memory.

3. Syntax of malloc() :
Void *malloc (size_t n);

It takes two argument.

Initialize the allocated memory to
zero.

Syntax of calloc() :
Void * calloc
(size = t n, size_t size);

Code Frequency count

for (j = 0; j < (3*n); j ++) (3*n) + 1

for (i = 0; i < n; i ++) ((3*n)*n) + 1

s = s + i ; ((3*n)*n)

printf(“%d”, i) 3n

Total 6n2 + 6n + 2

By considering only the order of magnitude, we can express the
worst case time complexity O(n2).

d. Write the difference between malloc() and calloc()
functions. Why do we use dynamic memory allocation ?

Ans.

S. No. malloc() calloc()

Uses of dynamic memory allocation :
i. In dynamic memory allocation, data structure can grow and shrink

during the execution time.
ii. They have efficient memory utilization because memory is not

preallocated.
iii. Insertion and deletion can be done very easily at the desired position.

e. Write an algorithm or C code to insert a node in doubly
link list in beginning.

Ans. Insertion at beginning :
1. IF PTR = NULL then Write OVERFLOW

Go to Step 9
[END OF IF]

2. SET NEW_NODE = PTR
3. SET PTR = PTR -> NEXT
4. SET NEW_NODE -> DATA = VAL
5. SET NEW_NODE -> PREV = NULL
6. SET NEW_NODE -> NEXT = START
7. SET HEAD -> PREV = NEW_NODE
8. SET HEAD = NEW_NODE
9. EXIT

Data Structure SP–7 A (CS/IT-Sem-3)

f. What is row-major order ? Explain with an example.
Ans.

1. In row major order, the element of an array is stored in computer
memory as row-by-row.

2. Under row major representation, the first row of the array occupies
the first set of memory locations reserved for the array, the second
row occupies the next set, and so forth.

3. In row major order, elements of a two-dimensional array are ordered
as :
A11, A12, A13, A14, A15, A16, A21, A22, A23, A24, A25, A26, A31,, A46, A51,
A52,, A56
Example :
Let us consider the following two-dimensional array :

a b c d
e f g h
i j k l

 
 
 
  

a. Move the elements of the second row starting from the first element
to the memory location adjacent to the last element of the first row.

b. When this step is applied to all the rows except for the first row, we
have a single row of elements. This is the row major representation.

c. By application of above mentioned process, we get
{a, b, c, d, e, f, g, h, i, j, k, l}

2. Attempt any four parts of the following : (5 × 4 = 20)
a. What is Tower of Hanoi problem ? Write the recursive code

in C language for the problem.
Ans. Tower of Hanoi problem :

1. Suppose three pegs, labelled A, B and C is given, and suppose on
peg A, there are finite number of n disks with decreasing size.

2. The object of the game is to move the disks from peg A to peg C
using peg B as an auxiliary.

3. The rule of game is follows :
a. Only one disk may be moved at a time. Specifically only the top disk

on any peg may be moved to any other peg.
b. At no time, can a larger disk be placed on a smaller disk.

A B C

Fig. 1.

The solution to the Tower of Hanoi problem for n = 3.
Total number of steps to solve Tower of Hanoi problem of n disk

= 2n – 1 = 23 – 1 = 7

Solved Paper (2014-15)SP–8 A (CS/IT-Sem-3)

(6) B C  (7) A C

A B C A B C

A B C A B C A B C

A B C A B C A B C

Initial (1) A C (2) A B

(3) C B (4) A C (5) B A

Fig. 2.

Recursive code for Tower of Hanoi :
#include<stdio.h>
#include<conio.h>
void main()
{
clrscr();
int n;
char A = ‘A’, B = ‘B’, C = ‘C’;
void hanoi (int, char, char, char);
printf(“Enter number of disks :”);
scanf(“%d”, &n);
printf(“\n\n Tower of Hanoi problem with %d disks\n”, n);
printf(“Sequence is : \n”);
hanoi (n, A, B, C);

printf(“\n”);
getch();

}
void hanoi (int n, char A, char B, char C)
{
If(n ! = 0)
{
hanoi (n – 1, A, C, B);
printf(“Move disk %d from %c to %c\n , n, A, C,”);
hanoi (n – 1, B, A, C);
}
}

b. What is circular queue ? Write a C code to insert an element
in circular queue. Write all the condition for overflow.

Data Structure SP–9 A (CS/IT-Sem-3)

Ans.
1. A circular queue is one in which the insertion of a new element is

done at the very first location of the queue if the last location at the
queue is full.

2. In circular queue, the elements Q[0], Q[1], Q[2] ... Q[n – 1] is
represented in a circular fashion.
For example : Suppose Q is a queue array of six elements.

3. PUSH and POP operation can be performed on circular queue.
Fig. 3 will illustrate the same.

Q[5] Q[0]

Q[1]

Q[2]Q[3]

Q[4]

Front

Rear

67

Q[5] Q[0]

Q[1]

Q[2]Q[3]

Q[4]

FrontRear

6742

18

7

42

(a) A circular queue after
inserting 18, 7 , 42, 67.

(b) A circular queue after
popping 18, 7.

Fig. 3.

C code to insert an element in circular queue :
void insert ()
{

int item;
if((front == 0 && rear == Max – 1)||((front == rear + 1))
{
printf(“Queue is overflow\n”);
return;
}
if(front == –1) / *If queue is empty*/
{
front = 0;
rear = 0;
}
else
if(rear == Max – 1) /*rear is at last position of queue*/
rear = 0;
else
rear = rear + 1;
printf(“Input the element for insertion :”);
scanf(“%d”, &item);
cqueue [rear] = item;
}

Solved Paper (2014-15)SP–10 A (CS/IT-Sem-3)

Conditions for overflow : There are two conditions :
1. (front = 0) and (rear = Max – 1)
2. front = rear + 1

If any of these two conditions is satisfied, it means that overflow
occurs.

c. What is stack ? Implement stack with singly linked list.
Ans. Stack :

1. A stack is one of the most commonly used data structure.
2. A stack, also called Last In First Out (LIFO) system, is a linear list

in which insertion and deletion can take place only at one end,
called top.

3. This structure operates in much the same way as stack of trays.
4. If we want to remove a tray from stack of trays it can only be

removed from the top only.
5. The insertion and deletion operation in stack terminology are

known as PUSH and POP operations.
Implementation using singly linked list :
typedef struct stack
{

int *data;
struct stack *next;
}stack;

void push(stack **top, int *data)
{
stack *newn;
newn = (stack *)malloc(sizeof(stack));
newn->data = data;
newn->next = (stack *)NULL;
if(*top == NULL)
{
*top = newn;
return;
}
newn->next = (*top);
*top = newn;
}
int *pop(stack **top)
{
int *rval = (int *)NULL;
stack *tmp;
if(*top != NULL)
{

tmp = *top;
*top = (*top)->next;
rval = tmp->data;
free(tmp);

Data Structure SP–11 A (CS/IT-Sem-3)

}
return(rval);

}

d. Write the procedures for insertion, deletion and traversal
of a queue.

Ans.
1. Insertion :

Insert in Q (Queue, Max, Front, Rear, Element)
Let Queue is an array, Max is the maximum index of array, Front
and Rear to hold the index of first and last element of Queue
respectively and Element is value to be inserted.
Step 1 : If Front = 1 and Rear = Max or if Front = Rear + 1

Display “Overflow” and Return
Step 2 : If Front = NULL [Queue is empty]

Set Front = 1 and Rear = 1
else if Rear = N, then
Set Rear = 1
else
Set Rear = Rear + 1

[End of if Structure]
Step 3 : Set Queue [Rear] = Element [This is new element]
Step 4 : End

2. Deletion :
Delete from Q (Queue, Max, Front, Rear, Item)
Step 1 : If Front = NULL [Queue is empty]

display “Underflow” and Return
Step 2 : Set Item = Queue [Front]
Step 3 : If Front = Rear [Only one element]

Set Front = Rear and Rear = NULL
Else if
Front = N, then
Set Front = 1
Else
Set Front = Front + 1
[End if structure]

Step 4 : End
3. Traversal of a queue : Here queue has Front End FE and Rear

End RE. This algorithm traverse queue applying an operation
PROCESS to each element of queue :
Step 1 : [Initialize counter] Set K = FE
Step 2 : Repeat step 3 and 4 while K  RE
Step 3 : [Visit element] Apply PROCESS to queue [K]
Step 4 : [Increase counter] Set K = K + 1

[End of step 2 loop]
Step 5 : Exit

Solved Paper (2014-15)SP–12 A (CS/IT-Sem-3)

e. Write a function in C language to reverse a string using
stack.

Ans. #include<stdio.h>
#include<conio.h>
#include<string.h>
#define MAX 20

int top = – 1;
char stack [MAX];
char pop();

push(char);

main()
{
clrscr();
char str [20];
int i;
printf(“Enter the string : ”);
gets(str);
for(i = 0; i < strlen(str); i++)
push (str [i]);
for(i = 0; i < strlen(str); i++)
str[i] = pop();
printf(“Reversed string is :”);
puts (str);
getch();
}

push (char item)
{
if(top == MAX – 1)
printf(“Stack overflow\n”);
else
stack[++top] = item;
}

char pop()
{
if(top == – 1)
printf(“Stack underflow \n”);
else
return stack [top – –];
}

f. Convert following infix expression into postfix expression
A + (B * C + D)/E.

Ans. (A + (B * C + D)/E)

Data Structure SP–13 A (CS/IT-Sem-3)

Character Stack Postfix

((
A (A
+ (+ A
((+(A
B (+(AB
* (+(* AB
C (+(* ABC
+ (+(+ ABC*
D (+(+ ABC*D
) (+ ABC*D+
/ (+/ ABC*D+
E (+/ ABC*D+E
) (ABC*D+E/+

Resultant postfix expression : ABC * D + E/+

3. Attempt any two parts of the following : (10 × 2 = 20)
a. Construct a height balanced binary search tree by

performing following operations :
Step 1 : Insert

19, 16, 21, 11, 17, 25, 6, 13
Step 2 : Insert

3
Step 3 : Delete

16
Ans. Step 1 : Insert 19, 16, 21, 11, 17, 25, 6, 13 :

Insert 19 :

19

Insert 16 :

19

16
0

1

1
Insert 21 :

19

16 21

0

0 0

Solved Paper (2014-15)SP–14 A (CS/IT-Sem-3)

Insert 11 :

11

0

19

16 21

1 0

Insert 17 :

19

16 21

1

0 0

11 17

0 0

Insert 25 :

19

16 21

0

0 – 1

11 17

0 0

25

0

Insert 6 :

16

11

1

6

0

19

21

1

1 – 1

17

0

25

0

Data Structure SP–15 A (CS/IT-Sem-3)

Insert 13 :

19

16 21

1

1 – 1

11 17

0 0

25

0

6

0

13

0

Step 2 : Insert 3 :

19

16 21

2

2 – 1

11 17

1 0

25

0

6

1

13

0

3

0

19

11 21

+ 1

0 – 1

6 16

1 0

25

0

3

0
13 17

0 0

LL Rotation

Step 3 : Delete 16 :

19

11 21

+ 1

0 – 1

6 13

+ 1 – 1

25

0

3

0
17

0

b. What is Huffman tree ? Create a Huffman tree with
following numbers :
24, 55, 13, 67, 88, 36, 17, 61, 24, 76

Ans. Huffman tree is a binary tree in which each node in the tree
represents a symbol and each leaf represent a symbol of original
alphabet.

Solved Paper (2014-15)SP–16 A (CS/IT-Sem-3)

Numerical :

24 55 13 67 88 36 17 61 24 76
A B C D E F G H I J

, , , , , , , , ,

Arrange all the numbers in ascending order :

13 17 24 24 36 55 61 67 76 88
C G A I F B H D J E

, , , , , , , , ,

24 3024 36 55 61 67 76 88
A I F B H D J E

, ,, , , , ,

13 17
C G

,

4830 36 55 61 67 76 88
F B H D J E

, ,, , , ,

13 17
C G

,

24 24
A I

48 55 61 66 67 76 88
B H D J E

, , , , , ,

24 24
A I

30 36
F

13 17
C G

61 66 67 76 88 103
H D J E

, , , , ,

30 36
F

17
G

13
C

48 55
B

24
I

24
A

67 76 88 103 127
D J E

, , , ,

24
I

24
A

55
B

48 6661
H

36
F

30

17
G

13
C

Data Structure SP–17 A (CS/IT-Sem-3)

88 103 127 143
E

, ,

24
I

24
A

55
B

48 6661 67 76
H D J

36
F

30

17
G

13
C

,

103127 143 ,

24
I

24
A

55
B

486661 67 76
H D J

36
F

30

17
G

13
C

,

191

88
E

143127

,

17
G

13
C

36
F

30

10388
E

55
B

48

24
I

24
A

270191

76
J

67
D

6661
H

191

24
I

24
A

55
B

48

143127

36
F

30

17
G

13
C

461

270

10388
E

6661
H

76
J

67
D

Solved Paper (2014-15)SP–18 A (CS/IT-Sem-3)

c. Define binary search tree. Create BST for the following
data, show all steps :
20, 10, 25, 5, 15, 22, 30, 3, 14, 13

Ans. Binary search tree :
1. A binary search tree is a binary tree.
2. Binary search tree can be represented by a linked data structure in

which each node is an object.
3. In addition to a key field, each node contains fields left, right and P,

which point to the nodes corresponding to its left child, its right
child and its parent respectively.
Numerical :
20, 10, 25, 5, 15, 22, 30, 3, 14, 13

1. Insert 20 : 2. Insert 10 :

20
10

20

3. Insert 25 : 4. Insert 5 :

10

20

25 10

20

25

5
5. Insert 15 : 6. Insert 22 :

10

20

25

5 15

10

20

25

5 15
22

7. Insert 30 : 8. Insert 3 :

10

20

25

5 15 22 30

10

20

25

5 15 22 30

3
9. Insert 14 : 10. Insert 13 :

10

20

25

5 15 22 30

3 14

10

20

25

5 15 22 30

3 14

13

Data Structure SP–19 A (CS/IT-Sem-3)

4. Attempt any two parts of the following : (10 × 2 = 20)
a. Define spanning tree. Find the minimal spanning tree for

the following graph using Prim’s algorithm.

6 4 3

7 5 2

1

2 19

9

8
12

21

25 17

13

5

1

Fig. 4.

Ans. Spanning tree :
1. A spanning tree of a graph is a sub-graph which is a tree and

contains all the vertices of graph.
Numerical :

1 2 3 4 5 6 7
1 – 1 9 – – – –
2 1 – 5 – 13 – –
3 9 5 – 19 17 – –
4 – – 19 – 25 2 –
5 – 13 17 25 – 12 21
6 – – – 2 12 – 8
7 – – – – 21 8 –

According to Prim’s algorithm, we choose vertex 1.
We choose edge (1, 2), since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25 17

13

5

1

Now at vertex 2, we choose the edge (2, 3), since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8
12 25 17

5

1

21 13
Now at vertex 3, we cannot choose edge (3, 1) because it will create
a cycle so we choose (3, 5).

Solved Paper (2014-15)SP–20 A (CS/IT-Sem-3)

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

17

1

5

Now at vertex 5, we choose the edge (5, 6) since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

17 5

1

Now at vertex 6, we choose the edge (6, 7) since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

17 5

1

6 4 3

7 5 2

1

Since in spanning tree, the tree should cover all the vertices and
should not make cycle.
But in the above tree, 4 is remaining so the above asked question is
wrong. If we assume to remove the edge from {3, 5} then the
spanning tree is :

1 2 3 4 5 6 7
1 – 1 9 – – – –
2 1 – 5 – 13 – –
3 9 5 – 19 – – –
4 – – 19 – 25 2 –
5 – 13 17 25 – 12 21
6 – – – 2 12 – 8
7 – – – – 21 8 –

Data Structure SP–21 A (CS/IT-Sem-3)

According to Prim’s algorithm, let’s choose vertex 1.
We choose edge {1, 2}, since it has minimum value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

Now at vertex 2, we choose the edge (2, 3), since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

Now at vertex 3, we choose the edge (3, 4), since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8
12 25

5

1

21 13
Now at vertex 4, we choose the edge (4, 6), since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

1

5

Now at vertex 6, we choose the edge (6, 7), since it has minimum
value.

6 4 3

7 5 2

1

2 19

9

8 12

21

25

13

5

1

Solved Paper (2014-15)SP–22 A (CS/IT-Sem-3)

Now at vertex 7, we cannot choose the edge (7, 6), because we have
already traversed this edge these we choose (7, 5).

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

 The spanning tree is

6 4 3

7 5 2

1

2 19

9

8
12

21

25

13

5

1

b. Find out the shortest path from node 1 to node 4 in a given
graph (Fig. 5) using Dijkstra shortest path algorithm.

1

2

3

4

5

6

7

8

6

7

5

2

1

3

10

14

12

12
204

Fig. 5.
Ans.

0

1 2 3 4 5 6 7

0

0

0

0

0

0

     

7

7

7

7

7

7

17

17

11

11

11

11







16

14

14







12

12

12





14

14

14

14

8

8

8

8

8

8

Shortest path from node 1 to node 4 = 0 + 7 + 11 + 14 = 32

Data Structure SP–23 A (CS/IT-Sem-3)

c. Write DFS algorithm to traverse a graph. Apply same
algorithm for the graph given in Fig. 6 by considering node
1 as starting node.

1

2

3

4

5

6

7

8

6

7

5

2

1

3

10

14

12

12
204

Fig. 6.

Ans. Depth First Search (DFS) : The general idea behind a depth first
search beginning at a starting node A is as follows :

a. First, we examine the starting node A.
b. Then, we examine each node N along a path P which begins at A;

that is, we process neighbour of A, then a neighbour of neighbour
of A, and so on.

c. This algorithm uses a stack instead of queue.
Algorithm :

i. Initialize all nodes to ready state (STATUS = 1).
ii. Push the starting node A onto stack and change its status to the

waiting state (STATUS = 2).
iii. Repeat steps (iv) and (v) until queue is empty.
iv. Pop the top node N of stack, process N and change its status to the

processed state (STATUS = 3).
v. Push onto stack all the neighbours of N that are still in the ready

state (STATUS = 1) and change their status to the waiting state
(STATUS = 2).
[End of loop]

vi. End.
Numerical : Adjacency list of the given graph :
1  2, 7
2  3
3  5, 4, 1
4  6
5  4
6  2, 5, 1
7  3, 6

1. Initially set STATUS = 1 for all vertex
2. Push 1 onto stack and set their STATUS = 2

1
3. Pop 1 from stack, change its STATUS = 1 and

Solved Paper (2014-15)SP–24 A (CS/IT-Sem-3)

Push 2, 7 onto stack and change their STATUS = 2; DFS = 1

2
7

4. Pop 7 from stack, Push 3, 6; DFS = 1, 7

2
3
6

5. Pop 6 from stack, Push 5; DFS = 1, 7, 6

2
3
5

6. Pop 5 from stack, Push 4; DFS = 1, 7, 6, 5

2
3
4

7. Pop 4 from stack; DFS = 1, 7, 6, 5, 4

2
3

8. Pop 3 from stack; DFS = 1, 7, 6, 5, 4, 3

2
9. Pop 2 from stack; DFS = 1, 7, 6, 5, 4, 3

Now, the stack is empty, so the depth first traversal of a given
graph is 1, 7, 6, 5, 4, 3.

5. Attempt any two parts of the following : (10 × 2 = 20)
a. What do you mean by hashing and collision ? Discuss the

advantages and disadvantages of hashing over other
searching techniques.

Ans. Hashing :
1. Hashing is a technique that is used to uniquely identify a specific

object from a group of similar objects.
2. Hashing is the transformation of a string of characters into a

usually shorter fixed-length value or key that represents the
original string.
Collision :

1. Collision is a situation which occur when we want to add a new record R
with key k to our file F, but the memory location address H(k) is already
occupied.

2. A collision occurs when more than one keys map to same hash
value in the hash table.

Data Structure SP–25 A (CS/IT-Sem-3)

Advantages of hashing over other search techniques :
1. The main advantage of hash tables over other table data structures

is speed. This advantage is more apparent when the number of
entries is large (thousands or more).

2. Hash tables are particularly efficient when the maximum number
of entries can be predicted in advance, so that the bucket array can
be allocated once with the optimum size and never resized.

3. If the set of key-value pairs is fixed and known ahead of time (so
insertions and deletions are not allowed), one may reduce the average
lookup cost by a careful choice of the hash function, bucket table
size, and internal data structures.
Disadvantages of hashing over other search techniques :

1. Hash tables can be more difficult to implement than self-balancing
binary search trees. Choosing an effective hash function for a
specific application is more an art than a science. In open-addressed
hash tables it is fairly easy to create a poor hash function.

2. The cost of a good hash function can be significantly higher than
the inner loop of the lookup algorithm for a sequential list or search
tree.

3. Hash tables are not effective when the number of entries is very
small. For certain string processing applications, such as spell-
checking, hash tables may be less efficient than trees, finite
automata, or arrays.

4. If each key is represented by a small enough number of bits, then,
instead of a hash table, one may use the key directly as the index
into an array of values.

b. Write an algorithm for merge sorting using the algorithm
sort in ascending order.
10, 25, 16, 5, 35, 48, 8

Ans. Merge sort :
a. Merge sort is a sorting algorithm that uses the idea of divide and

conquer.
b. This algorithm divides the array into two halves, sorts them

separately and then merges them.
c. This procedure is recursive, with the base criteria that the number

of elements in the array is not more than 1.
MERGE_SORT (a, p, r) :

1. if p < r
2. then q (p + r)/2
3. MERGE-SORT (A, p, q)
4. MERGE-SORT (A, q + 1, r)
5. MERGE (A, p, q, r)

MERGE (A, p, q, r) :
1. n1 = q – p + 1
2. n2 = r – q

Solved Paper (2014-15)SP–26 A (CS/IT-Sem-3)

3. Create arrays L [1n1 + 1] and
R [1......n2 + 1]

4. for i = 1 to n1
do

L[i] = A [p + i – 1]
endfor

5. for j = 1 to n2
do

R[j] = A[q + j]
endfor

6. L[n1 + 1] = , R[n2 + 1] = 
7. i = 1, j = 1
8. for k = p to r

do
if L[i]  R[j]
then A[k]  L[i]

i = i + 1
else A[k] = R[j]

j = j + 1
endif
endfor

9. exit
Numerical :
10, 25, 16, 5, 35, 48, 8

1. Divide first half 10, 25, 16, 5 35, 48, 8
2. Consider the first half : 10, 25, 16, 5 again divide into two sub-

arrays

5, 10, 16, 25

10, 25 5, 16

10 , 25 16 , 5

3. Consider the second half : 35, 48, 5 again divide into two sub-
arrays

8, 35, 48

35, 48 8

35 , 48 8

Data Structure SP–27 A (CS/IT-Sem-3)

4. Merge these two sorted sub-arrays,

5, 8, 10, 16, 25, 35, 45

8, 35, 485, 10, 16, 25

This is the sorted array.

c. Write short notes on any three of the following :
i. B-tree

Ans. B-tree :
1. A B-tree is a self-balancing tree data structure that keeps data

sorted and allows searches, sequential access, insertions, and
deletions in logarithmic time.

2. A B-tree of order m is a tree which satisfies the following properties :
a. Every node has at most m children.
b. Every non-leaf node (except root) has at least m/2 children.
c. The root has at least two children if it is not a leaf node.

d. A non-leaf node with k children contains k – 1 keys.
e. All leaves appear in the same level.

ii. Insertion sort
Ans.

1. In insertion sort, we pick up a particular value and then insert it at
the appropriate place in the sorted sublist, i.e., during kth iteration
the element a[k] is inserted in its proper place in the sorted sub-array
a[1], a[2], a[3] a[k – 1].

2. This task is accomplished by comparing a[k] with a[k – 1], a[k – 2],
a[k – 3] and so on until the first element a[j] such that a[j]  a[k] is
found.

3. Then each of the elements a[k – 1], a[k – 2], a[j + 1] are moved one position
up and then element a[k] is inserted in [j + 1]st position in the array.
Insertion-Sort (A)

1. for j  2 to length[A]
2. do key  A[j] /*Insert A[j] into the sorted sequence A[1....j – 1].*/
3. i  j – 1
4. while i > 0 and A[i] > key
5. do A[i + 1]  A[i]
6. i  i – 1
7. A[i + 1]  key

Analysis of insertion sort :
Complexity of best case isO(n)
Complexity of average case is O(n2)
Complexity of worst case is O(n2)

iii. Heap sort

Solved Paper (2014-15)SP–28 A (CS/IT-Sem-3)

Ans.
1. Heap sort finds the largest element and puts it at the end of array,

then the second largest item is found and this process is repeated
for all other elements.

2. The general approach of heap sort is as follows :
a. From the given array, build the initial max heap.
b. Interchange the root (maximum) element with the last element.
c. Use repetitive downward operation from root node to rebuild the

heap of size one less than the starting.
d. Repeat step (a) and (b) until there are no more elements.

MAX-HEAPIFY (A, i) :
1. i  left [i]
2. r  right [i]
3. if l  heap-size [A] and A[l] > A[i]
4. then largest  l
5. else largest  i
6. if r  heap-size [A] and A[r] > A [largest]
7. then largest  r
8. if largest  i
9. then exchange A[i]  A[largest]

10. MAX-HEAPIFY [A, largest]
HEAP-SORT(A) :

1. BUILD-MAX-HEAP (A)
2. for i  length [A] down to 2
3. do exchange A[1]  A[i]
4. heap-size [A]  heap-size [A] – 1
5. MAX-HEAPIFY (A, 1)

iv. Garbage collection
Ans.

1. When some memory space becomes reusable due to the deletion of
a node from a list or due to deletion of entire list from a program
then we want the space to be available for future use.

2. One method to do this is to immediately reinsert the space into the
free-storage list. This is implemented in the linked list.

3. This method may be too time consuming for the operating system
of a computer.

4. In another method, the operating system of a computer may
periodically collect all the deleted space onto the free storage list.
This type of technique is called garbage collection.

5. Garbage collection usually takes place in two steps. First the
computer runs through all lists, tagging those cells which are
currently in use and then the computer runs through the memory,
collecting all untagged space onto the free storage list.

6. The garbage collection may take place when there is only some
minimum amount of space or no space at all left in the free storage
list or when the CPU is idle and has time to do the collection.



Data Structure SP–1 A (CS/IT-Sem-3)

Section-A

1. Attempt all parts. All parts carry equal marks. Write answer
of each part in short. (2 × 10 = 20)

a. Given a 2D array A [– 100 : 100, – 5 : 50]. Find the address of
element A [99, 49] considering the base address 10 and each
element requires 4 bytes for storage. Follow row-major
order.

b. What are the various asymptotic notations ? Explain the
Big-oh notation.

c. What are the notations used in evaluation of arithmetic
expressions using prefix and postfix forms ?

d. Classify the hashing functions based on the various
methods by which the key value is found.

e. What is the maximum height of any AVL tree with 7 nodes ?

f. If the Tower of Hanoi is operated on n = 10 disks, calculate
the total number of moves.

g. Define connected and strongly connected graph.

h. Translate infix expression into its equivalent postfix
expression : A * (B + D)/E – F* (G + H/K).

i. For tree construction which is the suitable and efficient
data structure and why ?

j. Explain the application of sparse matrices.

Section-B

Note : Attempt any five questions from this section. (10 × 5 = 50)

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2015-16

DATA STRUCTURES USING C

Time : 3 Hours Max. Marks : 100

Solved Paper (2015-16)SP–2 A (CS/IT-Sem-3)

2. Consider the linear arrays AAA [5 : 50], BBB [– 5 : 10] and
CCC [1 : 8].

a. Find the number of elements in each array.
b. Suppose base (AAA) = 300 and w = 4 words per memory cell

for AAA. Find the address of AAA [15], AAA [35] and AAA [55].

3. Describe all rotations in AVL tree. Construct AVL tree from
the following nodes : B, C, G, E, F, D, A.

4. Explain binary search tree and its operations. Make a binary
search tree for the following sequence of numbers, show all
steps : 45, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11, 50, 10.

5. Explain Dijkstra’s algorithm with suitable example.

6. Write a C function for linked list implementation of stack.
Write all the primitive operations.

7. Draw a binary tree with following traversal :
Inorder : D B H E A I F J C G
Preorder : A B D E H C F I J G

8. Consider the following undirected graph.

23 1 4

938

25 18
G

17

3

15

28

A

B C

E

D

F

20

Fig. 1.

a. Find the adjacency list representation of the graph.
b. Find a minimum cost spanning tree by Kruskal’s algorithm.

9. How do you calculate the complexity of sorting algorithms ?
Also, write a recursive function in ‘C’ to implement the
merge sort on given set of integers.

Ans.

Section-C

Note : Attempt any two questions from this section. (15 × 2 = 30)
10. What are doubly linked lists ? Write C program to create

doubly linked list.

Data Structure SP–3 A (CS/IT-Sem-3)

OR
How do you find the complexity of an algorithm ? What is
the relation between the time and space complexities of an
algorithm ? Justify your answer with an example.

11. Write an algorithm for finding solution to the Tower
of Hanoi problem. Explain the working of your algorithm
(with 4 disks) with diagrams.

12. Define a B-tree. What are the applications of B-tree ? Draw
a B-tree of order 4 by insertion of the following keys in
order : Z, U, A, I, W, L, P, X, C, J, D, M, T, B, Q, E, H, S, K, N, R,
G, Y, F, O, V.



Solved Paper (2015-16)SP–4 A (CS/IT-Sem-3)

SOLUTION OF PAPER (2015-16)

Section-A

1. Attempt all parts. All parts carry equal marks. Write answer
of each part in short. (2 × 10 = 20)

a. Given a 2D array A [– 100 : 100, – 5 : 50]. Find the address of
element A [99, 49] considering the base address 10 and each
element requires 4 bytes for storage. Follow row-major
order.

Ans. LOC(A[i][j]) = Base (A) + w [n (i – lower bound for row index) +
(j – lower bound for column index))
LOC (A[99][49]) = 10 + 4 [50 (99 – (– 100) + 49 – (– 5)]

= 10 + 4 [50 (199) + 54] = 40026

b. What are the various asymptotic notations ? Explain the
Big-oh notation.

Ans. Various asymptotic notations are :
1. Theta notation (- notation)
2. Big-Oh (O - notation)
3. Omega notation ( - notation)

Big-Oh notation : It is used when there is only an asymptotic
upper bound. For a given function g(n), O(g(n)) is denoted by a set
of functions.

c. What are the notations used in evaluation of arithmetic
expressions using prefix and postfix forms ?

Ans. Notations used in evaluation of arithmetic expressions are :
i. Infix notation : In this notation, the operator symbol is placed

between its two operands.
For example : To add A to B we can write as, A + B or B + A

ii. Polish (Prefix) notation : Here the operator symbol is placed
before its two operands.
For example : To add A to B we can write as, + AB or + BA

iii. Reverse polish (Postfix) notation : In this notation, the operator
symbol is placed after its two operands.
For example : To add A and B we can write as : AB+ or BA+

d. Classify the hashing functions based on the various
methods by which the key value is found.

Ans. Hashing functions on various methods by which the key
value is founded are :

i. Division method ii. Multiplication method
iii. Mid square method iv. Folding method

e. What is the maximum height of any AVL tree with 7 nodes ?

Data Structure SP–5 A (CS/IT-Sem-3)

Ans. Maximum height of any AVL tree with 7 nodes is 3.

f. If the Tower of Hanoi is operated on n = 10 disks, calculate
the total number of moves.

Ans. For n number of disks, total number of moves = 2n – 1
For 10 disks, i.e., n = 10, total number of moves = 210 – 1

= 1024 – 1
= 1023

Therefore, if the Tower of Hanoi is operated on n = 10 disks, then
total number of moves are 1023.

g. Define connected and strongly connected graph.
Ans. Connected graph : A graph G is said to be connected if there is at

least one path between every pair of vertices in G.
Strongly connected graph : A graph G is said to be strongly
connected if there is at least one directed path from every vertex to
every other vertex.

h. Translate infix expression into its equivalent postfix
expression : A * (B + D)/E – F* (G + H/K).

Ans. Infix expression : A * (B + D)/E – F*(G + H/K)
A * (BD +)/E – F * (G + HK/)
A (BD +)*/E – F* (GHK/+)
(ABD + * E/) – (FGHK/+*)
ABD + * E/FGHK / + * –
Equivalent postfix expression is :
ABD + * E/FGHK / + * –

i. For tree construction which is the suitable and efficient
data structure and why ?

Ans. Linked list is the most suitable and efficient data structure because
it is easily accessible due to the concept of pointer used in it.

j. Explain the application of sparse matrices.
Ans. There are two applications of sparse matrix which are :

1. The sparse matrices are useful for computing large scale operations
that dense matrices can not handle.

2. It is used in solving partial differential equations.

Section-B

Note : Attempt any five questions from this section. (10 × 5 = 50)
2. Consider the linear arrays AAA [5 : 50], BBB [– 5 : 10] and

CCC [1 : 8].
a. Find the number of elements in each array.
b. Suppose base (AAA) = 300 and w = 4 words per memory cell

for AAA. Find the address of AAA [15], AAA [35] and AAA [55].

Solved Paper (2015-16)SP–6 A (CS/IT-Sem-3)

Ans.
a. The number of elements is equal to the length; hence use the

formula :
Length = UB – LB + 1

Length (AAA) = 50 – 5 + 1 = 46
Length (BBB) = 10 – (– 5) + 1 = 16
Length (CCC) = 8 – 1 + 1 = 8

b. Use the formula
LOC (AAA [i]) = Base (AAA) + w (i – LB)
LOC (AAA [15]) = 300 + 4 (15 – 5) = 340
LOC (AAA [35]) = 300 + 4 (35 – 5) = 420
AAA [55] is not an element of AAA, since 55 exceeds UB = 50.

3. Describe all rotations in AVL tree. Construct AVL tree from
the following nodes : B, C, G, E, F, D, A.

Ans. AVL rotations :
i. An AVL (or height balanced) tree is a balanced binary search tree.

ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of
left and right subtrees of that node.

Balance factor = height of left subtree – height of right subtree

iv. In order to balance a tree, there are four cases of rotations :

1. Left Left rotation (LL rotation) : In LL rotation every node
moves one position to left from the current position.

1

3

2
0

–1

–2
Insert 1, 2 and 3

Tree is unbalanced

1

3

2
0

–1

–2

1

2

3
00

0

To make tree balance we
use LL rotation which
moves nodes one position
to left

After LL rotation
tree is balanced

Fig. 1.

2. Right Right rotation (RR rotation) : In RR rotation every node
moves one position to right from the current position.

Data Structure SP–7 A (CS/IT-Sem-3)

3

2

1

2

1

0

Insert 3, 2 and 1

3

2

1

2

1

0

2

1 3
0

0

0

Tree is unbalanced
because node 3 has
balance factor 2

To make tree balance we use
RR rotation which moves
nodes one position to right

After RR Rotation
tree is balanced

Fig. 2.
3. Left Right rotation (LR rotation) : The LR Rotation is

combination of single left rotation followed by single right rotation.
In LR rotation, first every node moves one position to left then one
position to right from the current position.

3

3

1

2

2

–1

0

Insert 3, 1 and 2

3

2

1

2

–1

0

3

2

1

2

1

0

2

31
00

0

Tree is unbalanced
because node 3 has
balanced factor 2

LL rotation RR rotation After LR rotation
tree is balanced

After RR rotation
After LL rotation

Fig. 3.
4. Right Left rotation (RL rotation) : The RL rotation is the

combination of single right rotation followed by single left rotation.
In RL rotation, first every node moves one position to right then
one position to left from the current position.

2

3

1
–2

1

0

Insert 1, 3 and 2

1

3

2

1

2

3
0

–1

–2

2

31
00

0

0

Tree is unbalanced
because node 1 has
balance factor –2

RR rotation LL rotation After RL rotation
tree is balanced

After LL
rotation

After RR
rotation

Fig. 4.
Construction of AVL tree : B, C, G, E, F, D, A

Insert B : B
0

Insert C :

B
–1

C
0

Solved Paper (2015-16)SP–8 A (CS/IT-Sem-3)

Insert G :

B
–2

C
–1

G
0

RR
B G

C
0

00

rotation
Insert E :

B G

C
–1

10

E
0

Insert F :

B BG F

C C
–2 –1

2 00 0

E E
–1

G
0

0

B G

C

F

LR

0rotation

F E

RR

rotation

Insert D :

B CF F

C E
–2 0

1 –10 0

E G G
0 0

LR

1
B

0

0rotation
D

0

D
Insert A :

C

E
1

1

B
+1

D

A
0

–1

0

F

G
0

4. Explain binary search tree and its operations. Make a binary
search tree for the following sequence of numbers, show all
steps : 45, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11, 50, 10.

Ans. Binary search tree :
1. A binary search tree is a binary tree.
2. Binary search tree can be represented by a linked data structure in

which each node is an object.
3. In addition to a key field, each node contains fields left, right and P,

which point to the nodes corresponding to its left child, its right
child and its parent respectively.

4. A non-empty binary search tree satisfies the following properties :

Data Structure SP–9 A (CS/IT-Sem-3)

a. Every element has a key (or value) and no two elements have
the same value.

b. The keys, if any, in the left subtree of root are smaller than the
key in the node.

c. The keys, if any in the right subtree of the root are larger than
the keys in the node.

d. The left and right subtrees of the root are also binary search
tree.

Various operations of BST are :
a. Searching in a BST :

Searching for a data in a binary search tree is much faster than in
arrays or linked lists. The TREE-SEARCH (x, k) algorithm searches
the tree root at x for a node whose key value equals to k. It returns
a pointer to the node if it exist otherwise NIL.
TREE-SEARCH (x, k)

1. If x = NIL or k = key [x]
2. then return x
3. If k < key [x]
4. then return TREE-SEARCH (left [x], k)
5. else return TREE-SEARCH (right [x], k)
b. Traversal operation on BST :

All the traversal operations are applicable in binary search trees.
The inorder traversal on a binary search tree gives the sorted order
of data in ascending (increasing) order.

c. Insertion of data into a binary search tree :
To insert a new value w into a binary search tree T, we use the
procedure TREE-INSERT. The procedure passed a node z for which
key[z] = w, left [z] = NIL and Right [z] = NIL.

1. y  NIL
2. x  root [T]
3. while x  NIL
4. do y  x
5. if key [z] < key [x]
6. then x  left [x]
7. else x  right [x]
8. P[z]  y
9. if y = NIL

10. then root [T]  z
11. else if key [z] < key [y]
12. then left [y]  z
13. else right [y]  z
d. Delete a node : Deletion of a node from a BST depends on the

number of its children. Suppose to delete a node with key = z from
BST T, there are 3 cases that can occur.
Case 1 : N has no children. Then N is deleted from T by simply
replacing the location of N in the parent node P(N) by the null
pointer.

Solved Paper (2015-16)SP–10 A (CS/IT-Sem-3)

Case 2 : N has exactly one child. Then N is deleted from T by simply
replacing the location of N in P(N) by the location of the only child
of N.
Case 3 : N has two children. Let S(N) denote the inorder successor
of N. (The reader can verify that S(N) does not have a left child).
Then N is deleted from T by first deleting S(N) from T (by using
Case 1 or Case 2) and then replacing node N in T by the node S(N).
Numerical :

1. Insert 45 : 2. Insert 32 :

45 45

32
3. Insert 90 : 4. Insert 34 :

45

32 90

45

32 90

34

5. Insert 68 : 6. Insert 72 :

45

32 90

6834

45

32 90

34 68

72
7. Insert 15 : 8. Insert 24 :

45

32 90

72

683415

45

90

6834

7224

32

15

9. Insert 30 : 10. Insert 66 :

45

32

15

90

34

24

30

68

72

45

32

15

90

34

24

30

68

7266

Data Structure SP–11 A (CS/IT-Sem-3)

11. Insert 11 :

45

32 90

3415

2411

30

68

7266

12. Insert 50 :

45

32

15

90

34 68

7211 24

30

66

50

13. Insert 10 :
45

32

15

90

34 68

7211 24

30

66

5010

5. Explain Dijkstra’s algorithm with suitable example.
Ans. Algorithm :

a. Dijkstra’s algorithm, is a greedy algorithm that solves the single-
source shortest path problem for a directed graph G = (V, E) with
non-negative edge weights, i.e., we assume that w(u, v)  0 each
edge (u, v)  E.

b. Dijkstra’s algorithm maintains a set S of vertices whose final
shortest-path weights from the source s have already been
determined.

c. That is, for all vertices v  S, we have d[v] = (s, v).
d. The algorithm repeatedly selects the vertex u  V – S with the

minimum shortest-path estimate, inserts u into S, and relaxes all
edges leaving u.

Solved Paper (2015-16)SP–12 A (CS/IT-Sem-3)

e. We maintain a priority queue Q that contains all the vertices in
v – s, keyed by their d values.

f. Graph G is represented by adjacency list.
g. Dijkstra’s always chooses the “lightest or “closest” vertex in V – S to

insert into set S, that it uses as a greedy strategy.
DIJKSTRA (G, w, s)

1. INITIALIZE-SINGLE-SOURCE (G, s)
2. S  
3. Q  V[G]
4. while Q  
5. do u  EXTRACT-MIN (Q)
6. S  S  {u}
7. for each vertex v  Adj [u]
8. do RELAX (u, v, w)

Example : Working of Dijkstra’s algorithm for following graph :

A

E

D

10
100

30 10

60

20

50

B

C

Extract min (A) :

A

E

D

B

C

0







A

0

B



C



D



E


10

100

30 10

60

20

50

All edges leaving A :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30 10

50

20

60

100

Data Structure SP–13 A (CS/IT-Sem-3)

Extract min (B) :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30

50

20

60

10

100

All edges leaving B :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

10

1030

100

60

20

50

Extract min(D) :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

100
10

50

20

60

30 10

All edges leaving (D) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

30

50

10

10

20

50

30

60

100
90

Solved Paper (2015-16)SP–14 A (CS/IT-Sem-3)

Extract min(C) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

90

30

50

30

50

20

60

10

10

100

All edges leaving C :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10
60

30

50

10

10

50

20

60

30

100

Extract min(E) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10

60

30
50

10

1030

20

50

100

60

Shortest path :

A

E

D

B

C

0

10

60

30
50

30

10

10

20

Data Structure SP–15 A (CS/IT-Sem-3)

6. Write a C function for linked list implementation of stack.
Write all the primitive operations.

Ans. #include<stdio.h>
#include<conio.h>
#include<alloc.h>

struct node
{
int info;
struct node *link;
};

struct node *top;
void main()
{
void create(), traverse(), push(), pop();
create();
printf(“\n stack is :\n”);
traverse();
pop();
printf(“After push the element in the stack is : \n”) ;
traverse();
pop();
printf(“After pop the element in the stack is : \n”)
traverse();
getch();
}
void create()
{
struct node *ptr, *cpt;
char ch;
ptr = (struct node *) malloc (sizeof (struct node));
printf(“Input first info”);
scanf(“%d”, &ptr -> info);
ptr ->link = NULL;

do
{
cpt = (struct node *) malloc (sizeof (struct node));
printf(“Input next information”);
scanf(“%d”, &cpt -> info);
cpt -> link = ptr;
ptr = cpt;
printf(“Press <Y/N> for more information”);
ch = getch() ;
}
while (ch == ‘Y’)
top = ptr;
}

Solved Paper (2015-16)SP–16 A (CS/IT-Sem-3)

void traverse()
{
struct node *ptr ;
printf (“Traversing of stack : \n”);
ptr = top ;
while (ptr != NULL)
{
printf (“%d\n”, ptr -> info);
ptr = ptr ->link;
}
}

void push()
{
struct node *ptr;
ptr = (struct node *) malloc (sizeof (struct node));
if(ptr == NULL)
{
printf(“Overflow\n”);
return;
}
printf(“Input New node information”);
scanf(“%d”, &ptr -> info);
ptr ->link = top;
top = ptr;
}

void pop()
{
struct node *ptr;
if(top == NULL)
{
printf (“Underflow \n”);
return;
}
ptr = top;
top = ptr ->link;
free (ptr);
}

7. Draw a binary tree with following traversal :
Inorder : D B H E A I F J C G
Preorder : A B D E H C F I J G

Ans. From preorder traversal, we get root node to be A.

A

IFJCGDBHE

Data Structure SP–17 A (CS/IT-Sem-3)

Now considering left subtree.
Observing both the traversal we can get B as root node and D as
left child and HE as a right subtree.

A

IFJCG

D HE

B

Now observing the preorder traversal we get E as a root node and
H as a left child.

A

IFJCG

D

B

E

H

Repeating the above process with the right subtree of root node A,
we finally obtain the required tree in given Fig. 5.

A
B C

D H F G

I JE
Fig. 5.

8. Consider the following undirected graph.

Fig. 6.

23 1 4

938

25 18
G

17

3

15

28

A

B C

E

D

F

20

a. Find the adjacency list representation of the graph.
b. Find a minimum cost spanning tree by Kruskal’s algorithm.

Solved Paper (2015-16)SP–18 A (CS/IT-Sem-3)

Ans.
a.

Fig. 7.

A B 23 F 28 G 38 ×
A 23 C 20 G 1 ×
B 20 D 15 G 4 ×
C 15 E 3 G 9 ×
D 3 F 17 G 18 ×
A 28 E 17 G 25 ×
A 38 B 1 C 4 D 9 E 18 F 25

B
C
D
E
F
G ×

b. Kruskal’s algorithm :
i. We will choose e = BG as it has minimum weight.

B

DA G

F E

C
1

ii. Now choose e = ED.
B

DA G

F E

1

3

C

iii. Choose e = CG, since it has minimum weights.
B

DA
G

F E

1 4
C

3

iv. Choose e = GD.
B

DA G

F E

1

3

4
9

C

v. Choose e = EF and discard BC, CD and GE because they form cycle.
B

DA
G

F E

4
1 9

3
17

C

vi. Now choose e = AB and discard AG, FG and AF because they form
cycle. Final minimum spanning tree is given as :

Data Structure SP–19 A (CS/IT-Sem-3)

B

DA G

F E

1

3

4
9

23

17

C

Fig. 8.

9. How do you calculate the complexity of sorting algorithms ?
Also, write a recursive function in ‘C’ to implement the
merge sort on given set of integers.

Ans. Complexity of sorting algorithms :
1. The complexity of a sorting algorithm measures the running time

as a function of the number n of items to be sorted.
2. We know that each sorting algorithm S is made up of the following

operations, where A1, A2, ..., An contain the items to be sorted and
B is an auxiliary location :
a. Comparisons, which test whether Ai < Aj or test whether

Ai < B
b. Interchanges, which switch the contents of Ai and Aj or of

Ai and B
c. Assignments, which set B : = Ai and then set Aj : = B or

Aj : = Ai
3. The complexity function measures only the number of comparisons.
4. There are two main cases whose complexity we calculate i.e., the

worst case and the average case.
Function :
void merge (int low, int mid, int high)
{
int temp [MAX] ;
int i = low;
int j = mid + 1;
int k = low;
while ((i <= mid) && (j <= high))
{
if (array [i] <= array [j])

temp [k++] = array [i++];
else

temp [k++] = array [j++] ;
}
while (i <= mid) {
temp [k++] = array [i++];
while (j <= high)
temp [k++] = array [j++] ;
for (i = low; i <= high; i++)
array [i] = temp [i];
}
void merge_sort (int low, int high)

Solved Paper (2015-16)SP–20 A (CS/IT-Sem-3)

{
int mid;
if (low != high)
{
mid = (low + high) / 2;
merge_sort (low, mid);
merge_sort (mid + 1, high);
merge (low, mid, high);
}
}

Section-C
Note : Attempt any two questions from this section. (15 × 2 = 30)

10. What are doubly linked lists ? Write C program to create
doubly linked list.

Ans. Doubly linked list :
1. The doubly or two-way linked list uses double set of pointers, one

pointing to the next node and the other pointing to the preceding
node.

2. In doubly linked list, all nodes are linked together by multiple links
which help in accessing both the successor and predecessor node
for any arbitrary node within the list.

3. Every node in the doubly linked list has three fields :

LPT INFO RPT

Fig. 9.

4. LPT will point to the node in the left side (or previous node) i.e., LPT
will hold the address of the previous node, RPT will point to the
node in the right side (or next node) i.e., RPT will hold the address
of the next node.

5. INFO field store the information of the node.
6. A doubly linked list can be shown as follows :

LPT RPT

NULL INFO INFO INFO INFO NULL

Fig. 10. Doubly linked list.

7. The structure defined for doubly linked list is :
struct node

{
int info;
struct node *rpt;
struct node *lpt;

} node;
Program :
include<stdio.h>

Data Structure SP–21 A (CS/IT-Sem-3)

include<conio.h>
include<alloc.h>
struct node

{
int info ;
struct node *lpt ;
struct node *rpt ;
} ;

struct node *first ;
void main ()
{
create () ;
getch () ;
}
void create ()
{
struct node *ptr, *cpt ;
char ch ;
ptr = (struct node *) malloc (size of (struct node)) ;
printf (“Input first node information”) ;
scanf (“%d”, & ptr  info) ;
ptr  lpt = NULL ;
first = ptr ;
do
{
cpt = (struct node *) malloc (size of (struct node)) ;
printf (“Input next node information”);
scanf (“%d”, & cpt  info) ;
ptr  rpt = cpt ;
cpt  lpt = ptr ;
ptr = cpt ;
printf (“Press <Y/N> for more node”) ;
ch = getch ();
}
while (ch == ‘Y’) ;
ptr  rpt = NULL ;
}

OR
How do you find the complexity of an algorithm ? What is
the relation between the time and space complexities of an
algorithm ? Justify your answer with an example.

Ans. Complexity of an algorithm :
1. The complexity of an algorithm M is the function f(n) which gives

the running time and/or storage space requirement of the algorithm
in terms of the size n of the input data.

2. The storage space required by an algorithm is simply a multiple of
the data size n.

3. Following are various cases in complexity theory :

Solved Paper (2015-16)SP–22 A (CS/IT-Sem-3)

a. Worst case : The maximum value of f(n) for any possible
input.

b. Average case : The expected value of f(n) for any possible
input.

c. Best case : The minimum possible value of f(n) for any possible
input.

Types of complexity :
1. Space complexity : The space complexity of an algorithm is the

amount of memory it needs to run to completion.
2. Time complexity : The time complexity of an algorithm is the

amount of time it needs to run to completion.
Relation between the time and space complexities of an
algorithm :

1. The time and space complexities are not related to each other.
2. They are used to describe how much space/time our algorithm

takes based on the input.
3. For example, when the algorithm has space complexity of :

a. O(1) i.e., constant then the algorithm uses a fixed (small)
amount of space which does not depend on the input. For
every size of the input the algorithm will take the same
(constant) amount of space.

b. O(n), O(n2), O(log (n)) - these indicate that we create additional
objects based on the length of our input.

4. In contrast, the time complexity describes how much time our
algorithm consumes based on the length of the input.

5. For example, when the algorithm has time complexity of :
a. O(1) i.e., constant then no matter how big is the input it always

takes a constant time.
b. O(n), O(n2), O(log (n)) - again it is based on the length of the

input.
For example :

function(list l) { function(list l) {
for (node in l) { print(“I got a list”); }
print(node) ;
}

}
In this example, both take O(1) space as we do not create additional
objects which shows that time and space complexity might be
different.

11. Write an algorithm for finding solution to the Tower
of Hanoi problem. Explain the working of your algorithm
(with 4 disks) with diagrams.

Ans. Tower of Hanoi problem :
1. Suppose three pegs, labelled A, B and C is given, and suppose on

peg A, there are finite number of n disks with decreasing size.
2. The object of the game is to move the disks from peg A to peg C

using peg B as an auxiliary.
3. The rule of game is follows :

Data Structure SP–23 A (CS/IT-Sem-3)

a. Only one disk may be moved at a time. Specifically only the top
disk on any peg may be moved to any other peg.

b. At no time, can a larger disk be placed on a smaller disk.
A B C

Fig. 11.
The solution to the Tower of Hanoi problem for n = 3.

Fig. 12.
(6) B C  (7) A C

A B C A B C

A B C A B C A B C

A B C A B C A B C

Initial (1) A C (2) A B

(3) C B (4) A C (5) B A

Total number of steps to solve Tower of Hanoi problem of n disk
= 2n – 1 = 23 – 1 = 7

Algorithm :
TOWER (N, BEG, AUX, END)
This procedure gives a recursive solution to the Tower of Hanoi
problem for N disks.

1. If N = 1, then :
a. Write: BEG  END
b. Return

[End of If structure]
2. [Move N – 1 disk from peg BEG to peg AUX]

Call TOWER (N – 1, BEG, END, AUX)
3. Write: BEG  END
4. [Move N – 1 disk from peg AUX to peg END]

Call TOWER (N – 1, AUX, BEG, END)
5. Return

Time complexity :
Let the time required for n disks is T(n).
There are 2 recursive calls for n – 1 disks and one constant time
operation to move a disk from ‘from’ peg to ‘to’ peg. Let it be kl.
Therefore,

Solved Paper (2015-16)SP–24 A (CS/IT-Sem-3)

T(n) = 2 T(n – 1) + k1
T(0) = k2 , a constant.
T(1) = 2k2 + k1
T(2) = 4k2 + 2k1+ k1
T(2) = 8k2 + 4k1+ 2k1 + k1
Coefficient of k1 = 2n

Coefficient of k2 = 2n – 1
Time complexity is O(2n) or O(an) where a is a constant greater
than 1.
So, it has exponential time complexity.
Space complexity :
Space for parameter for each call is independent of n i.e., constant.
Let it be k.
When we do the 2nd recursive call 1st recursive call is over. So, we
can reuse the space of 1st call for 2nd call. Hence,
T(n) = T(n – 1) + k
T(0) = k
T(1) = 2k
T(2) = 3k
T(3) = 4k
So, the space complexity is O(n).
Numerical : Fig. 13 contains a schematic illustration of the
recursive solution for TOWER (4, A, B, C) (4 disks, 3 pegs)

TOWER (4, A, B, C)

TOWER (3, B, A, C)

TOWER (2, A, B, C)

TOWER (2, B, C, A)

TOWER (2, C, A, B)

TOWER (2, A, B, C)

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (3, A, C, B)

A C A C 

B A B A 

C B C B 

A C.................... A C 

A B... A B 

 A C ... A C 

B C .. B C 

Fig. 13. Recursive solution to Tower of Hanoi problem for n = 4.

Data Structure SP–25 A (CS/IT-Sem-3)

Observe that the recursive solution for n = 4 disks consist of the
following 15 moves :

A B A  C B  C A  B C A C  B A  B A  C B  C
B  A C  A B  C A  B A  C B  C

12. Define a B-tree. What are the applications of B-tree ? Draw
a B-tree of order 4 by insertion of the following keys in
order : Z, U, A, I, W, L, P, X, C, J, D, M, T, B, Q, E, H, S, K, N, R,
G, Y, F, O, V.

Ans. B-tree :
1. A B-tree is a self-balancing tree data structure that keeps data

sorted and allows searches, sequential access, insertions, and
deletions in logarithmic time.

2. A B-tree of order m is a tree which satisfies the following properties :
a. Every node has at most m children.
b. Every non-leaf node (except root) has at least m/2 children.
c. The root has at least two children if it is not a leaf node.

d. A non-leaf node with k children contains k – 1 keys.
e. All leaves appear in the same level.
Application of B-tree : The main application of a B-tree is the
organization of a huge collection of records into a file structure.
The organization should be in such a way that any record in it can
be searched very efficiently i.e., insertion, deletion and modification
operations can be carried out perfectly and efficiently.
Construction of B-tree :
Insert Z : Z

Insert U : U Z

Insert A : A U Z

Insert I : A I U Z

I

A U Z
Insert W :

I

A U W Z

Insert L :
I

A L U W Z

I

A W Z

U

L

Solved Paper (2015-16)SP–26 A (CS/IT-Sem-3)

Insert P :
I

A W Z

U

PL
Insert X :

I

A W X

U

PL Z
Insert C :

I

C W X

U

PL ZA
Insert J :

I

C W X

U

LJ ZA P

Insert D :

I

D W X

U

J ZC L PA

Insert M :

I

D W X

U

J ZCA L M P

I

D W X

L

J ZC MA P

U

Insert T :

I

D W X

L

J ZC MA P

U

T

Insert B :

I

D W X

L

J ZC MB P

U

TA

I

D W X

L

J ZC M P

U

TA

B

Data Structure SP–27 A (CS/IT-Sem-3)

I

B

A

L U

C D J M P T W X Z

Insert Q :
I

B

A

L U

C D J M P T W X Z

I

B

A

L U

C D J M P Q W X ZT

Insert E :

I

B

A

L U

C D J M P Q W X ZT

Insert H :
I

B

A

L P

C D J M Q W X ZT

U

I

B

A

L P

C D J M Q W X ZT

U

E

Insert S :

I

B

A

L P

C D J M Q W X ZT

U

E H

Solved Paper (2015-16)SP–28 A (CS/IT-Sem-3)

Insert K :

I

B

A

L P

C J M Q W X ZT

U

E H

D

Insert N, R :

I

B

A

L P

C J M Q W X ZS

U

E H

D

T

I

B

A

L P

C J M Q W X ZS

U

E H

D

T

B

A C K M Q W X ZE H

D

SJ N T

R U

I P

L

Insert G, Y :

B

A C K M Q W X YE G

D

SJ N T

R U

I P

L

ZH

B

A C K M Q W YE G

D

SJ N T

R U

I P

L

ZH

X

Data Structure SP–29 A (CS/IT-Sem-3)

Insert F, O & V :

B

A C K M Q V YE F

D

SJ N T

R U

I P

L

ZG

X

H O W

B

A C K M Q V YE

D

SJ N T

R U

I P

L

ZG

X

H O W

F



SP–1 A (CS/IT-Sem-3)Data Structure

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2016-17

DATA STRUCTURES USING ‘C’

Time : 3 Hours Max. Marks : 100

Section-A

1. Attempt all parts. All parts carry equal marks. Write answer of
each part in short. (2 × 10 = 20)

a. Define time complexity and space complexity of an
algorithm.

b. What are the merits and demerits of array data structures ?

c. How do you push elements in a linked stack ?

d. Differentiate linear and non-linear data structures.

e. What is the significance of priority queue ?

f. Define complete binary tree. Give example.

g. When does a graph become tree ?

h. Prove that the number of odd degree vertices in a connected
graph should be even.

i. What is sorting ? How is sorting essential for database
applications ?

j. Give the worst case and best case time complexity of binary
search.

Section-B

Note : Attempt any five questions from this section. (10 × 5 = 50)
2. What is recursion ? Write a recursive program to find sum

of digits of the given number. Also, calculate the time
complexity.

3. Solve the following :

Solved Paper (2016-17)SP–2 A (CS/IT-Sem-3)

a. ((A – (B + C) * D) / (E + F)) [Infix to postfix]
b. (A + B) + *C – (D – E) ^ F [Infix to prefix]
c. 7 5 2 + * 4 1 5 – / – [Evaluate the given postfix expression]

4. Write a C program to implement the array representation
of circular queue.

5. Write a C program to implement binary tree insertion,
deletion with example.

6. Write the C program for various traversing techniques of
binary tree with neat example.

7. What is quick sort ? Sort the given values using quick sort;
present all steps/iterations :
38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72

8. Illustrate the importance of various traversing techniques
in graph along with its applications.

9. Compare and contrast the difference between B+ tree index
files and B-tree index files with an example.

Note : Attempt any two questions from this section. (15 × 2 = 30)
10. What is meant by circular linked list ? Write the functions

to perform the following operations in a doubly linked list.
a. Creation of list of nodes.
b. Insertion after a specified node.
c. Delete the node at a given position.
d. Sort the list according to descending order.
e. Display from the beginning to end.

11. Define AVL trees. Explain its rotation operations with
example. Construct an AVL tree with the values 10 to 1
numbers into an initially empty tree.

SP–3 A (CS/IT-Sem-3)Data Structure

12. Discuss Prim’s and Kruskal’s algorithm. Construct
minimum spanning tree for the below given graph using
Prim’s algorithm (Source node = a).

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 1.



Solved Paper (2016-17)SP–4 A (CS/IT-Sem-3)

1. It is a data structure whose
elements form a sequence.

2. Every element in the
structure has a unique
predecessor and unique
successor.

3. Examples of linear data
structure are arrays, linked
lists, stacks and queues.

It is a data structure whose
elements do not form a sequence.

There is no unique predecessor or
unique successor.

Examples of non-linear data
structures are trees and graphs.

SOLUTION OF PAPER (2016-17)

Section-A

1. Attempt all parts. All parts carry equal marks. Write answer of
each part in short. (2 × 10 = 20)

a. Define time complexity and space complexity of an
algorithm.

Ans. Time complexity : Time complexity is the amount of time it needs
to run to completion.
Space complexity : Space complexity is the amount of memory it
needs to run to completion.

b. What are the merits and demerits of array data structures ?
Ans. Merits of array :

1. Array is a collection of elements of similar data type.
2. Hence, multiple applications that require multiple data of same

data type are represented by a single name.
Demerits of array :

1. Linear arrays are static structures, i.e., memory used by them
cannot be reduced or extended.

2. Previous knowledge of number of elements in the array is
necessary.

c. How do you push elements in a linked stack ?
Ans. To insert an element onto stack is known as PUSH operation.

Before inserting first we increase the top pointer and then insert
the element.

d. Differentiate linear and non-linear data structures.
Ans.

S. No. Linear data structure Non-linear data structure

e. What is the significance of priority queue ?

SP–5 A (CS/IT-Sem-3)Data Structure

Ans. Priority queue is a data structure in which elements can be stored
as per their priorities. And therefore one can remove the elements
from such queue according to their priorities. Such type of queue is
useful to operating system in job scheduling algorithms.

f. Define complete binary tree. Give example.
Ans. A tree is called complete binary tree if tree satisfies following

conditions :
1. Each node has exactly two children except leaf node.
2. All leaf nodes are at same level.
3. If a binary tree contains m nodes at level l, it contains at most 2m

nodes at level l + 1.
Example :

A

B

D E

H I J K

C

F G

L M N O

Fig. 1.

g. When does a graph become tree ?
Ans. A graph becomes a tree when there is exactly one path between

every pair of its vertices.

h. Prove that the number of odd degree vertices in a connected
graph should be even.

Ans. Let V1 and V2 be the set of vertices of even and odd degrees
respectively. Thus, V1  V2 =  and V1  V2 = V.
By Handshaking theorem,

2|E| = deg()
v V

v

 =

1

deg()
v V

v

 +

2

deg()
v V

v



As both 2|E| and
1

deg()
v V

v

 are even. So,

2

deg()
v V

v

 must be

even.
Since, deg(v) is odd for all v  V2. So, the number of odd degree
vertices in a connected graph must be even.

i. What is sorting ? How is sorting essential for database
applications ?

Solved Paper (2016-17)SP–6 A (CS/IT-Sem-3)

Ans. Sorting : It is an operation which is used to put the elements of list
in a certain order. i.e., either in decreasing or increasing order.
Sorting essential for database applications : It is easier and
faster to locate items in a sorted list than unsorted. Sorting
algorithms can be used in a program to sort an array for later
searching or writing out to an ordered file or report. Sorted arrays/
lists make it easier to find things more quickly.

j. Give the worst case and best case time complexity of binary
search.

Ans. Worst case : In each comparison, the size of the search area is
reduced by half. So, the efficiency of the binary search method at
the worst case is log2 n + 1, i.e., O(log2 n + 1) where n is the total
number of items that will be used for the binary search.
Best case : The best case of binary search occurs when the element
we are searching for is the middle element of the list/array because
in that case we will get the desired result in a single go. In this case,
the time complexity of the algorithm will be O(1).

Section-B

Note : Attempt any five questions from this section. (10 × 5 = 50)
2. What is recursion ? Write a recursive program to find sum

of digits of the given number. Also, calculate the time
complexity.

Ans. Recursion :
1. Recursion is a process of expressing a function that calls itself to

perform specific operation.
2. Indirect recursion occurs when one function calls another function

that then calls the first function.
Program :
#include<stdio.h>
#include<conio.h>
int sum(int n)
{

if(n < 10)
return(n);
else
return(n % 10 + sum (n / 10));

}
main()
{
int s,n;
printf(“\nEnter any number:”);
scanf(“%d”,&n);
s = sum(n);
printf(“\nSum of digits = %d”, s);

SP–7 A (CS/IT-Sem-3)Data Structure

getch();
return 0;
}
Time complexity :

i. Assume that n is a 10 digit number. The function is called 10 times
as the problem is reduced by a factor of 10 each time the program
recurse.

ii. So, we can conclude that time taken by program is linear in terms
of the length of the digit of the input number n.

iii. So, time complexity is,
T(n) = O(length of digit of (n)) where n is the number whose sum of
individual digit is to be found.

3. Solve the following :
a. ((A – (B + C) * D) / (E + F)) [Infix to postfix]
b. (A + B) + *C – (D – E) ^ F [Infix to prefix]
c. 7 5 2 + * 4 1 5 – / – [Evaluate the given postfix expression]

Ans.
a. ((A – (B + C)*D)/(E + F))

((A – (B + C)*D)/
X

(EF +))

((A – (B + C)*D)/X)

Y

((A – (BC +) * D) / X)

((A – (Y * D)) / X

Z

((A – (YD *)) / X)

((A – Z)) / X)

T

((AZ –) / X)

(T / X)
T X /
Now put the values,
AZ – EF + /
AYD * – EF + /
ABC + D * – EF + /
This is the required postfix form.

b. (A + B) + *C – (D – E)  F

X

(+ AB)
+ * C – (D – E)  F

X + * C – (D – E)  F
X + * C –

Y

(– DE)
 F

X + * C – (Y  F)

Solved Paper (2016-17)SP–8 A (CS/IT-Sem-3)

X + * C –
Z

(Y F)
X + *(C – Z)
X + *

T

(– CZ)

X + * T
* + XT
Now put the values,
* + + AB – CZ
* + + AB – C  YF
* + + AB – C  – DEF
This is the required prefix form.

c. 752 + * 415 – / – :
First this expression is converted into infix expression as :

Symbol scanned Stack

7 7
5 7, 5
2 7, 5, 2
+ 7, 5 + 2
* 7*(5 + 2)
4 7*(5 + 2), 4
1 7*(5 + 2), 4, 1
5 7*(5 + 2), 4, 1, 5
– 7*(5 + 2), 4, 1 – 5
/ 7*(5 + 2), 4/(1 – 5)
– (7*(5 + 2)) – (4/(1 – 5))

2
5
7

5 2 7
7

 
7 *7 49

7, 5, 2 inserted + occurred * occurred

4
49

1
4
49

5
1
4
49

1 5 4
4

49

  
4 / 4 1

49
  

4 inserted 1 inserted 5 inserted – occurred / occurred

  49 (1) 50

– occurred
Hence, the value is 50

SP–9 A (CS/IT-Sem-3)Data Structure

4. Write a C program to implement the array representation
of circular queue.

Ans.
#include<stdio.h>
#include<conio.h>
#include<process.h>
#define MAX 10

typedef struct {
int front, rear ;
int elements [MAX];
} queue;

void createqueue (queue *aq) {
aq -> front = aq -> rear = – 1

}
int isempty (queue *aq)
{

if(aq -> front = = – 1)
return 1;

else
return 0;

}
int isfull (queue *aq) {

if(((aq -> front = = 0) && (aq -> rear = = MAX – 1))
||(aq - > front == aq - > rear + 1))

return 1;
else

return 0;
}
void insert (queue *aq, int value) {

if(aq -> front = = – 1)
aq -> front = aq -> rear = 0;

else
aq -> rear = (aq -> rear + 1) % MAX;
aq -> element [aq -> rear] = value;

}
int delete (queue *aq) {

int temp;
temp = aq -> element [aq -> front];
if(aq -> front = = aq ->rear)
aq -> front = aq -> rear = – 1;
else
aq -> front = (aq -> front + 1) % MAX ;
return temp;
}

void main()
{

int ch, elmt;

Solved Paper (2016-17)SP–10 A (CS/IT-Sem-3)

queue q;
create queue (&q);
while (1) {
printf(“1. Insertion \n”);
printf(“2. Deletion \n”);
printf(“3. Exit \n”);
printf(“Enter your choice”);
scanf(“%d”,&ch) ; .

switch (ch)
{

case 1:
if(isfull (&q))
{
printf (“queue is full”);
getch();
}
else
{
printf(“Enter value”);
scanf(“%d”, &elmt) ;
insert (&q, elmt) ;
}
break;
case 2: if (isempty (&q))
{
printf(“queue empty”);
getch();
}
else
{
printf(“Value deleted is % d”, delete (&q));
getch();
}
break;
case 3:
exit(1);

}
} }

5. Write a C program to implement binary tree insertion,
deletion with example.

Ans. #include<stdlib.h>
#include<stdio.h>
struct bin_tree {
int data;
struct bin_tree *right, *left;

SP–11 A (CS/IT-Sem-3)Data Structure

};
typedef struct bin_tree node;
void insert(node *tree, int val)
{
node *temp = NULL;
if(!(*tree))
{
temp = (node *)malloc(sizeof(node));
temp->left = temp->right = NULL;
temp->data = val;
*tree = temp;
return;
}
if(val < (*tree)->data)
{
insert(&(*tree)->left, val);
}
else if(val > (*tree)->data)
{
insert(&(*tree)->right, val);
}
}
void print_inorder(node *tree)
{
if (tree)
{
print_inorder(tree->left);
printf(“%d\n”,tree->data);
print_inorder(tree->right);
}
}
void deltree(node *tree)
{
if (tree)
{
deltree(tree->left);
deltree(tree->right);
free(tree);
}
}
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */

Solved Paper (2016-17)SP–12 A (CS/IT-Sem-3)

insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);
/* Printing nodes of tree */
printf(“After insertion inorder display\n”);
print_inorder(root);
/* Deleting all nodes of tree */
deltree(root);
printf(“Tree is empty”);
}
Output of program :
After insertion inorder display
2
4
6
9
12
15
17
Tree is empty.

6. Write the C program for various traversing techniques of
binary tree with neat example.

Ans. #include<stdio.h>
#include<stdlib.h>
struct node
{
int value;
node* left;
node* right;
};
struct node* root;
struct node* insert(struct node* r, int data);
void inorder(struct node* r);
void preorder(struct node* r);
void postorder(struct node* r);
int main()
{
root = NULL;
int n, v;
printf(“How many data do you want to insert ?\n”);
scanf(“%d”, &n);
for(int i=0; i<n; i++){

SP–13 A (CS/IT-Sem-3)Data Structure

printf(“Data %d: ”, i+1);
scanf(“%d”, &v);
root = insert(root, v);
}
printf(“Inorder Traversal :”);
inorder(root);
printf(“\n”);
printf(“Preorder Traversal :”);
preorder(root);
printf(“\n”);
printf(“Postorder Traversal :”);
postorder(root);
printf(“\n”);
return 0;
}
struct node* insert(struct node* r, int data)
{
if(r==NULL)
{
r = (struct node*) malloc(sizeof(struct node));
r->value = data;
r->left = NULL;
r->right = NULL;
}
else if(data < r->value){
r->left = insert(r->left, data);
}
else {
r->right = insert(r->right, data);
}
return r;
}
void inorder(struct node* r)
{
if(r!=NULL){
inorder(r->left);
printf(“%d ”, r->value);
inorder(r->right);
}
}
void preorder(struct node* r)
{
if(r!=NULL){
printf(“%d”, r->value);
preorder(r->left);
preorder(r->right);
}

Solved Paper (2016-17)SP–14 A (CS/IT-Sem-3)

}
void postorder(struct node* r)
{
if(r!=NULL){
postorder(r->left);
postorder(r->right);
printf(“%d”, r->value);
}
}
Output :
How many data do you want to insert ?
5
Preorder Traversal :
3 2 1 4 5
Inorder Traversal :
1 2 3 4 5
Postorder Traversal :
1 2 5 4 3

7. What is quick sort ? Sort the given values using quick sort;
present all steps/iterations :
38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72

Ans. Quick sort :
1. Quick sort is a sorting algorithm that also uses the idea of divide

and conquer.
2. This algorithm finds the elements, called pivot, that partitions the

array into two halves in such a way that the elements in the left
sub-array are less than and the elements in the right sub-array are
greater than the partitioning element.

3. Then these two sub-arrays are sorted separately. This procedure is
recursive in nature with the base criteria.
Numerical : A = 38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72. Choose
the pivot element to be the element in position (left + right)/2.
During the partitioning process,

1. Elements strictly to the left of position lo are less than or equivalent
to the pivot element (69).

2. Elements strictly to the right of position hi are greater than the
pivot element. When lo and hi cross, we are done. The final value
of hi is the position in which the partitioning element ends up.
Swap pivot element with leftmost element lo = left + 1; hi = right;

left

38 81 22 48 13 69

right

93 14 45 58 79 72

left+1

Move hi left and lo right as far as we can; then swap A[lo] and
A[hi], and move hi and lo one more position.

SP–15 A (CS/IT-Sem-3)Data Structure

lo

69 81* 22 48 13 38 93 14 45 58* 79* 72*

hi hi hi 

Repeat above

69 58 22* 48* 13* 38* 93* 14 45* 81 79 72

hilololololo    

Repeat above until hi and lo cross; then hi is the final position of
the pivot element, so swap A[hi] and A[left].

81 7969 58 93* 7222 48 13 38 45 14**

lo lo
hi

Partitioning complete; return value of hi.

14 58 22 48 13 38 45 69 93 81 79 72
hi

38 81 22 48 13 69 93 14 45 58 79 72

14 58 22 48 13 38 45 69 93 81 79 72

quicksort (, 1, 12)A

14 58 22 48 13 38 45 93 81 79 72

38 45 22 14 13 48 58 79 72 81 93

quicksort (, 1, 7)A quicksort (, 9, 12)A

14 45 22 38 13

14 13 22 38 45

quicksort (, 1, 5)A

79 72

72 79

quicksort (, 9, 10)A

14 13

13 14

quicksort (, 1, 2)A

38 45

38 45

quicksort (, 4, 5)A

Fig. 2.

8. Illustrate the importance of various traversing techniques
in graph along with its applications.

Solved Paper (2016-17)SP–16 A (CS/IT-Sem-3)

Ans. Various types of traversing techniques are :
1. Breadth First Search (BFS)
2. Depth First Search (DFS)

Importance of BFS :
1. It is one of the single source shortest path algorithms, so it is used

to compute the shortest path.
2. It is also used to solve puzzles such as the Rubik’s Cube.
3. BFS is not only the quickest way of solving the Rubik’s Cube, but

also the most optimal way of solving it.
Application of BFS : Breadth first search can be used to solve
many problems in graph theory, for example :

1. Copying garbage collection.
2. Finding the shortest path between two nodes u and v, with path

length measured by number of edges (an advantage over depth
first search).

3. Ford-Fulkerson method for computing the maximum flow in a flow
network.

4. Serialization/Deserialization of a binary tree vs serialization in
sorted order, allows the tree to be re-constructed in an efficient
manner.

5. Construction of the failure function of the Aho-Corasick pattern
matcher.

6. Testing bipartiteness of a graph.
Importance of DFS : DFS is very important algorithm as based
upon DFS, there are O(V + E)-time algorithms for the following
problems :

1. Testing whether graph is connected.
2. Computing a spanning forest of G.
3. Computing the connected components of G.
4. Computing a path between two vertices of G or reporting that no

such path exists.
5. Computing a cycle in G or reporting that no such cycle exists.

Application of DFS : Algorithms that use depth first search as a
building block include :

1. Finding connected components.
2. Topological sorting.
3. Finding 2-(edge or vertex)-connected components.
4. Finding 3-(edge or vertex)-connected components.
5. Finding the bridges of a graph.
6. Generating words in order to plot the limit set of a group.
7. Finding strongly connected components.

9. Compare and contrast the difference between B+ tree index
files and B-tree index files with an example.

SP–17 A (CS/IT-Sem-3)Data Structure

Ans.

S. No. Basis B+ tree B-tree

Example :

3 5

1 2 6 4 8 9

3 5

1 2 6 4 8 9

B tree :+ B-tree :

1. Definition

2. Space
complexity

3. Storage

4. Data

5. Space

6. Function of leaf
nodes

7. Searching

8. Search
accessibility

9. Redundant
key

A B-tree is an
organizational structure
for information storage
and retrieval in the form
of a tree in which all
terminal nodes are at the
same distance from the
base, and all non-terminal
nodes have between n and
2n sub-trees or pointers
(where n is an integer).

O(n)

In a B-tree, search keys
and data are stored in
internal or leaf nodes.

The leaf nodes of the tree
store pointers to records
rather than actual records.

These trees waste space.

In B-tree, the leaf node
cannot store using linked
list.

In B-tree, searching
becomes difficult as data
cannot be found in the leaf
node.

In B-tree, the search is not
that easy as compared to
a B+ tree.

They do not store
redundant search key.

B+ tree is an n-array tree
with a variable but often
large number of children
per node. A B+ tree
consists of a root, internal
nodes and leaves. The root
may be either a leaf or a
node with two or more
children.

O(n)

In a B+ tree, data is stored
only in leaf nodes.

The leaf nodes of the tree
store the actual record
rather than pointers to
records.

These trees do not waste
space.

In B+ tree, leaf node data
are ordered in a
sequential linked list.

In B+ tree, searching of any
data is very easy because
all data is found in leaf
nodes.

In B+ tree, the searching
becomes easy.

They store redundant
search key.

Solved Paper (2016-17)SP–18 A (CS/IT-Sem-3)

Note : Attempt any two questions from this section. (15 × 2 = 30)
10. What is meant by circular linked list ? Write the functions

to perform the following operations in a doubly linked list.
a. Creation of list of nodes.
b. Insertion after a specified node.
c. Delete the node at a given position.
d. Sort the list according to descending order.
e. Display from the beginning to end.

Ans. Circular linked list : A circular list is a linear linked list, except
that the last element points to the first element, Fig. 3 shows a
circular linked list with 4 nodes for non-empty circular linked list,
there are no NULL pointers.

Fig. 3.

start

Functions :
a. To create a list :

void create ()
{
struct node *ptr, *cpt ;
char ch ;
ptr = (struct node *) malloc (size of (struct node)) ;
printf (“Input first node information”) ;
scanf (“%d”, & ptr  info) ;
ptr  lpt = NULL ;
first = ptr ;
do
{
cpt = (struct node *) malloc (size of (struct node)) ;
printf (“Input next node information”);
scanf (“%d”, & cpt  info) ;
ptr  rpt = cpt ;
cpt  lpt = ptr ;
ptr = cpt ;
printf (“Press <Y/N> for more node”) ;
ch = getch ();
}
while (ch == ‘Y’) ;
ptr  rpt = NULL ;
}

b. To insert after a specific node :
void insert_given_node ()

SP–19 A (CS/IT-Sem-3)Data Structure

{
struct node *ptr, *cpt, *tpt, *rpt, *lpt;
int m;
ptr = (struct node *) malloc (size of (struct node));
if (ptr == NULL)
{
printf (“OVERFLOW”);
return;
}
printf (“input new node information”);
scanf (“%d”, & ptr  info);
printf (“input node information after which insertion”);
scanf (“%d”, & m);
cpt = first;
while (cpt  info != m)
cpt = cpt  rpt;
tpt = cpt  rpt;
cpt  rpt = ptr;
ptr  lpt = cpt;
ptr  rpt = tpt;
tpt  lpt = ptr;
printf (“Insertion is done\n”);
}

c. To delete the node at a given position :
void deleteNode(int data) {
struct dllNode *nPtr, *tmp = head;
if (head == NULL) {
printf(“Data unavailable\n”);
return;
} else if (tmp->data == data) {
nPtr = tmp->next;
tmp->next = NULL;
free(tmp);
head = nPtr;
totNodes– –;
} else {
while (tmp->next != NULL && tmp->data != data) {
nPtr = tmp;
tmp = tmp->next;
}
if (tmp->next == NULL && tmp->data != data) {
printf(“Given data unavailable in list\n”);
return;
} else if (tmp->next != NULL && tmp->data == data) {
nPtr->next = tmp->next;
tmp->next->previous = tmp->previous;

Solved Paper (2016-17)SP–20 A (CS/IT-Sem-3)

tmp->next = NULL;
tmp->previous = NULL;
free(tmp);
printf(“Data deleted successfully\n”);
totNodes – –;
} else if (tmp->next == NULL && tmp->data == data) {
nPtr->next = NULL;
tmp->next = tmp->previous = NULL;
free(tmp);
printf(“Data deleted successfully\n”);
totNodes– –;
}
}
}

d. To sort the list according to descending order :
void insertionSort() {
struct dllNode *nPtr1, *nPtr2;
int i, j, tmp;
nPtr1 = nPtr2 = head;
for (i = 0; i < totNodes; i++) {
tmp = nPtr1->data;
for (j = 0; j < i; j++)
nPtr2 = nPtr2->next;
for (j = i; j > 0 && nPtr2->previous->data < tmp; j--) {
nPtr2->data = nPtr2->previous->data;
nPtr2 = nPtr2->previous;
}
nPtr2->data = tmp;
nPtr2 = head;
nPtr1 = nPtr1->next;
}
}

e. To display from the beginning to end :
void display()
{
if(head == NULL)
printf(“\nList is Empty!!!”);
else
{
struct Node *temp = head;
printf(“\nList elements are: \n”);
printf(“NULL <--- ”);
while(temp -> next != NULL)
{
printf(“%d <===> ”,temp -> data);
}

SP–21 A (CS/IT-Sem-3)Data Structure

printf(“%d ---> NULL”, temp -> data);
}
}

11. Define AVL trees. Explain its rotation operations with
example. Construct an AVL tree with the values 10 to 1
numbers into an initially empty tree.

Ans.
i. An AVL (or height balanced) tree is a balanced binary search tree.
ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of
left and right subtrees of that node.
Balance factor = height of left subtree – height of right subtree

iv. In order to balance a tree, there are four cases of rotations :
1. Left Left rotation (LL rotation) : In LL rotation every node

moves one position to left from the current position.

1

3

2
0

–1

–2
Insert 1, 2 and 3

Tree is unbalanced

1

3

2
0

–1

–2

1

2

3
00

0

To make tree balance we
use LL rotation which
moves nodes one position
to left

After LL rotation
tree is balanced

Fig. 4.

2. Right Right rotation (RR rotation) : In RR rotation every node
moves one position to right from the current position.

3

2

1

2

1

0

Insert 3, 2 and 1

3

2

1

2

1

0

2

1 3
0

0

0

Tree is unbalanced
because node 3 has
balance factor 2

To make tree balance we
use RR rotation which
moves nodes one position
to right

After RR Rotation
tree is balanced

Fig. 5.
3. Left Right rotation (LR rotation) : The LR Rotation is

combination of single left rotation followed by single right rotation.
In LR rotation, first every node moves one position to left then one
position to right from the current position.

Solved Paper (2016-17)SP–22 A (CS/IT-Sem-3)

3

3

1

2

2

–1

0

Insert 3, 1 and 2

3

2

1

2

–1

0

3

2

1

2

1

0

2

31
00

0

Tree is unbalanced
because node 3 has
balanced factor 2

LL rotation RR rotation After LR rotation
tree is balanced

After RR rotation
After LL rotation

Fig. 6.
4. Right Left rotation (RL rotation) : The RL rotation is the

combination of single right rotation followed by single left rotation.
In RL rotation, first every node moves one position to right then
one position to left from the current position.

2

3

1
–2

1

0

Insert 1, 3 and 2

1

3

2

1

2

3
0

–1

–2

2

31
00

0

0

Tree is unbalanced
because node 1 has
balance factor –2

RR rotation LL rotation After RL rotation
tree is balanced

After LL
rotation

After RR
rotation

Fig. 7.
Numerical :
Insert 10 :

10
0

Insert 9 :

10
1

9
0

Insert 8 :

10

2

9
1

8

0

9

1

8
0

10
0LL

rotation

Insert 7 :

9

1

8

1

7

0
10

0

SP–23 A (CS/IT-Sem-3)Data Structure

Insert 6 :

9

2

8

2

7

1
10

0

6

0

9

1

7

0
10

0

6

0

8

0

LL

rotation

Insert 5 :

9

2

7

1

6

1
10

0

5

0
8

0 9

0

8

0

10

0

5

1

0
6

7

0

LL

rotation

Insert 4 :

7

1

6

2

5

1
9

0

4

0
8

0

10

0
9

0

8

0

10

0
5

0

4

0

6

0

7

0

LL

rotation

Insert 3 :

9

0

8

0

10

0
5

1

4

1

6

0

7

1

3

0

Insert 2 :

9

0

8

0

10

0
5

2

4

2

6

0

7

2

3

1

2

0

9

0

8

0

10

0
5

1

3

0

6

7

1

2

0
4

0

LL

rotation

Solved Paper (2016-17)SP–24 A (CS/IT-Sem-3)

Insert 1 :

9

0

8

0
10

03

0

2

1

5

7

1

1

0
6

0

4

0

0

9

0

8

0

10

0
5

2

3

1

6

0

7

2

2

1

1

0
4

LL

rotation

12. Discuss Prim’s and Kruskal’s algorithm. Construct
minimum spanning tree for the below given graph using
Prim’s algorithm (Source node = a).

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 8.

Ans. Prim’s algorithm :
First it chooses a vertex and then chooses an edge with smallest
weight incident on that vertex. The algorithm involves following
steps :
Step 1 : Choose any vertex V1 of G.
Step 2 : Choose an edge e1 =V1V2 of G such that V2  V1 and e1 has
smallest weight among the edge e of G incident with V1.
Step 3 : If edges e1, e2,, ei have been chosen involving end
points V1, V2,, Vi+1, choose an edge ei+1 = VjVk with
Vj = {V1 Vi+1} and Vk  {V1Vi+1} such that ei+1 has smallest
weight among the edges of G with precisely one end in
{V1 Vi+1}.
Step 4 : Stop after n – 1 edges have been chosen. Otherwise goto
step 3.
Kruskal’s algorithm :

i. In this algorithm, we choose an edge of G which has smallest weight
among the edges of G which are not loops.

ii. This algorithm gives an acyclic subgraph T of G and the theorem
given below proves that T is minimal spanning tree of G. Following
steps are required :

SP–25 A (CS/IT-Sem-3)Data Structure

Step 1 : Choose e1, an edge of G, such that weight of e1, w(e1) is as
small as possible and e1 is not a loop.

Step 2 : If edges e1, e2,, ei have been selected then choose an
edge ei+1 not already chosen such that

i. the induced subgraph, G[{e1 ei+1}] is acyclic and

ii. w(ei+1) is as small as possible

Step 3 : If G has n vertices, stop after n – 1 edges have been chosen.
Otherwise repeat step 2.

If G be a weighted connected graph in which the weight of the
edges are all non-negative numbers, let T be a sub-graph of G
obtained by Kruskal’s algorithm then, T is minimal spanning tree.

Numerical :

b

d

a

c

e

1

2

3

4

5 6
7

8
9

3

Fig. 9.

Start with source node = a
Now, edge with smallest weight incident on a is e = (a, c).
So, we choose e = (a, c).
Now we look on weights :

w(c, d) = 4, w(c, e) = 2, w(c, b) = 5

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 10.

Since minimum is w(c, e) = 2. We choose e = (c, e)
Again, w(e, d) = 3

w(e, a) = 8
w(e, b) = 7

Solved Paper (2016-17)SP–26 A (CS/IT-Sem-3)

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 11.
Since minimum is w(e, d) = 3, we choose e = (e, d)

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 12.
Now, w(d, b) = 7, we choose w(d, b)

b

d

a

c

e

1

2

3

4

5 6

78
9

3

Fig. 13.

Therefore, the minimum spanning tree is :

b

d

a

c

e

1

2

7

3

Fig. 14.



Data Structure SP–1 A (CS/IT-Sem-3)

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2017-18
DATA STRUCTURES

Time : 3 Hours Max. Marks : 70

Note : Attempt all sections. Assume missing data, if any.

Section – A

1. Attempt all questions in brief. (2 × 7 = 14)
a. Define the term data structure. List some linear and non-

linear data structures stating the application area where
they will be used.

b. Discuss the concept of “successor” and “predecessor” in
binary search tree.

c. Convert the following arithmetic infix expression into its
equivalent postfix expression.
Expression : A – B/C + D*E + F

d. Explain circular queue. What is the condition if circular
queue is full ?

e. Calculate total number of moves for Tower of Hanoi for
n = 10 disks.

f. List the different types of representation of graphs.

g. Explain height balanced tree. List general cases to maintain
the height.

Section-B

2. Attempt any three of the following : (7 × 3 = 21)
a. What do you understand by time space tradeoff ? Explain

best, worst and average case analysis in this respect with
an example.

b. Use quick sort algorithm to sort 15, 22, 30, 10, 15, 64, 1, 3, 9, 2.
Is it a stable sorting algorithm? Justify.

Solved Paper (2017-18)SP–2 A (CS/IT-Sem-3)

c. Define spanning tree. Also construct minimum spanning
tree using Prim’s algorithm for the given graph.

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Fig. 1.

d. Define tree, binary tree, complete binary tree and full binary
tree. Write algorithm or function to obtain traversals of a
binary tree in preorder, postorder and inorder.

e. Construct a B-tree on following sequence of inputs.
10, 20, 30, 40, 50, 60, 70, 80, 90
Assume that the order of the B-tree is 3.

Section-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. What are the various asymptotic notations ? Explain Big O

notation.

b. Write an algorithm to insert a node at the end in a circular
linked list.

4. Attempt any one part of the following : (7 × 1 = 7)
a. What is a stack ? Write a C program to reverse a string

using stack.

b. Define the recursion. Write a recursive and non-recursive
program to calculate the factorial of the given number.

5. Attempt any one part of the following : (7 × 1 = 7)
a. Draw a binary tree with following traversals :

Inorder : B C A E G D H F I J
Preorder : A B C D E F G H I J

b. Consider the following AVL tree and insert 2, 12, 7 and 10 as
new node. Show proper rotation to maintain the tree as
AVL.

Data Structure SP–3 A (CS/IT-Sem-3)

3

4

6

8

119

5

7

10

Fig. 2.

6. Attempt any one part of the following : (7 × 1 = 7)
a. What is a threaded binary tree ? Explain the advantages of

using a threaded binary tree.

b. Describe Dijkstra’s algorithm for finding shortest path.
Describe its working for the graph given below.

A

E

D

10
100

30
10

60

20

50

B

C

Fig. 3.

7. Attempt any one part of the following : (7 × 1 = 7)
a. Write short notes on :
i. Hashing technique

ii. Garbage collection

b. Explain the following : (7 × 1 = 7)
i. Heap sort

ii. Radix sort



Solved Paper (2017-18)SP–4 A (CS/IT-Sem-3)

SOLUTION OF PAPER (2017-18)

Note : Attempt all sections. Assume missing data, if any.

Section – A

1. Attempt all questions in brief. (2 × 7 = 14)
a. Define the term data structure. List some linear and non-

linear data structures stating the application area where
they will be used.

Ans. It is a particular way of storing and organizing data in a computer so
that it can be used efficiently.
It can be classified into two types :

i. Linear data structures :
1. Array 2. Stacks
3. Queue 4. Linked list

ii. Non-linear data structures :
1. Tree
2. Graph

b. Discuss the concept of “successor” and “predecessor” in
binary search tree.

Ans. In binary search tree, if a node X has two children, then its
predecessor is the maximum value in its left subtree and its successor
is the minimum value in its right subtree.

c. Convert the following arithmetic infix expression into its
equivalent postfix expression.
Expression : A – B/C + D*E + F

Ans. (A – B/C + D*E + F)

Character Stack Postfix

((
A (A
– (– A
B (– AB
/ (– / AB
C (– / ABC
+ (– + ABC /
D (– + ABC / D
* (– + * ABC / D
E (– + * ABC /DE
+ (– ++ ABC / DE*
F (– ++ ABC / DE*F
) (ABC / DE*F ++ –

Data Structure SP–5 A (CS/IT-Sem-3)

d. Explain circular queue. What is the condition if circular
queue is full ?

Ans. Circular queue : A circular queue is one in which the insertion of
a new element is done at the very first location of the queue if the
last location at the queue is full.

Syntax to check circular queue is full :
If ((front == MAX – 1) || (front == 0 && rear == MAX – 1))

e. Calculate total number of moves for Tower of Hanoi for
n = 10 disks.

Ans. For n number of disks, total number of moves = 2n – 1
For 10 disks, i.e., n = 10, total number of moves = 210 – 1

= 1024 – 1
= 1023

Therefore, if the Tower of Hanoi is operated on n = 10 disks, then
total number of moves are 1023.

f. List the different types of representation of graphs.
Ans. Different types of representation of graphs :

1. Matrix representation
2. Linked representation

g. Explain height balanced tree. List general cases to maintain
the height.

Ans.
i. An AVL (or height balanced) tree is a balanced binary search tree.
ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of
left and right subtrees of that node.
Balance factor = height of left subtree – height of right subtree.
General cases to maintain the height are :

a. Left Left rotation (LL rotation)
b. Right Right rotation (RR rotation)
c. Left Right rotation (LR rotation)
d. Right Left rotation (RL rotation)

Section-B

2. Attempt any three of the following : (7 × 3 = 21)
a. What do you understand by time space tradeoff ? Explain

best, worst and average case analysis in this respect with
an example.

Ans. Time-space trade-off :
1. The time-space trade-off refers to a choice between algorithmic

solutions of data processing problems that allows to decrease the

Solved Paper (2017-18)SP–6 A (CS/IT-Sem-3)

running time of an algorithmic solution by increasing the space to
store data and vice-versa.

2. Time-space trade-off is basically a situation where either space
efficiency (memory utilization) can be achieved at the cost of time
or time efficiency (performance efficiency) can be achieved at the
cost of memory.
Best, worst and average case analysis : Suppose we are
implementing an algorithm that helps us to search for a record
amongst a list of records. We can have the following three cases
which relate to the relative success our algorithm can achieve with
respect to time :

1. Best case :
a. The record we are trying to search is the first record of the list.
b. If f(n) is the function which gives the running time and / or storage

space requirement of the algorithm in terms of the size n of the
input data, this particular case of the algorithm will produce a
complexity C(n) = 1 for our algorithm f(n) as the algorithm will run
only 1 time until it finds the desired record.

2. Worst case :
a. The record we are trying to search is the last record of the list.
b. If f(n) is the function which gives the running time and / or storage

space requirement of the algorithm in terms of the size n of the
input data, this particular case of the algorithm will produce a
complexity C(n) = n for our algorithm f(n), as the algorithm will run
n times until it finds the desired record.

3. Average case :
a. The record we are trying to search can be any record in the list.
b. In this case, we do not know at which position it might be.
c. Hence, we take an average of all the possible times our algorithm

may run.
d. Hence assuming for n data, we have a probability of finding any

one of them is 1/n.
e. Multiplying each of these with the number of times our algorithm

might run for finding each of them and then taking a sum of all
those multiples, we can obtain the complexity C(n) for our algorithm
f(n) in case of an average case as following :

C(n) = 1·
1
2

+ 2· 1
2

 + ... + n·
1
2

C(n) = (1 + 2 + ... + n) ·
1
2
�

C(n) =
(1) 1 1

·
2 2

n n n
n

 


Hence in this way, we can find the complexity of an algorithm for
average case as

C(n) = O((n + 1)/2)

Data Structure SP–7 A (CS/IT-Sem-3)

b. Use quick sort algorithm to sort 15, 22, 30, 10, 15, 64, 1, 3, 9, 2.
Is it a stable sorting algorithm? Justify.

Ans.

Let A [] = 15 22 30 10 15 64 1 3 9 2
1 2 3 4 5 6 7 8 9 10

Here p = 1, r = 10
x = A[10] i.e., x = 2
i = p – 1 i.e., i = 0
j = 1 to 9

Now, j = 1 and i = 0
A[j] = A[1] = 15 and 15  2

So, j = 2 and i = 0
A[2] = 22  2 (False)

Now, j = 3 and i = 0
A[3] = 30  2 (False)

j = 4 and i = 0
A[4] = 10  2 (False)

j = 5
A[5] = 15  2 (False)

j = 6
A[6] = 64  2 (False)

j = 7
A[7] = 1 2 (True)

i = 0 + 1 = 1
A[1]  A[7]

i.e., 1 22 30 10 15 64 15 3 9 2
1 2 3 4 5 6 7 8 9 10

j = 8 and i = 1
A[8] = 3  2 (False)

j = 9 and i = 1
A[9] = 9  2 (False)

then, A[1 + 1]  A[r]
A[2]  A[10]

q  2

i.e., 1 2 30 10 15 64 15 3 9 22
1 2 3 4 5 6 7 8 9 10

QUICK SORT (A, 1, 1)

1 2
1 2

QUICK SORT (A, 3, 10)

30 10 15 64 15 3 9 22
3 4 5 6 7 8 9 10

Here p = 3, r = 10
x = A[10] = 22

Solved Paper (2017-18)SP–8 A (CS/IT-Sem-3)

i = 3 – 1 = 2
j = 3 to 9; j = 3 and i = 2

A[3] = 30  22 (False)
j = 4 and i = 2

A[4] = 10  22 (True)
i = 2 + 1 = 3 and A[3]  A[4]

i.e., 10 30 15 64 15 3 9 22
3 4 5 6 7 8 9 10

j = 5 and i = 3
A[5] = 15  22 (True)

i = 3 + 1 = 4 and A[4]  A[5]

10 15 30 64 15 3 9 22
3 4 5 6 7 8 9 10

Similarly
j = 7, i = 4

A[7] = 15  22 (True)
i = 4 + 1 = 5 and A[5]  A[7]

i.e., 10 15 15 64 15 3 9 22
3 4 5 6 7 8 9 10

Similarly, we get another pivot element

10 15 15 3 9 22 64 30

Thus, this is a stable algorithm.

c. Define spanning tree. Also construct minimum spanning
tree using Prim’s algorithm for the given graph.

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Fig. 1.

Ans. Spanning tree :
1. A spanning tree of graph is a sub-graph which is a tree and contains

all the vertices of graph.
Numerical :

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Let us take A as source node.

Data Structure SP–9 A (CS/IT-Sem-3)

Now we look on weight
w(A, B) = 12, w(A, F) = 17, w(A, E) = 15
 w(A, B) is smallest. Choose e = (AB)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(B, F) = 7, w(B, D) = 2, w(B, C) = 1
 w(B, C) is smallest  choose e = (BC)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(C, D) = 6

 w(C, D) is smallest  choose e = (CD)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(D, B) = 2, w(D, F) = 10, w(D, E) = 14
 w(D, B) is smallest but forms a cycle
 Discard it.
Now w(D, F) =10 is smallest  Choose e = (DF)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

Now we look on weight
w(F, B) = 7, w(F, A) = 17, w(F, E) = 19
 w(F, B) is smallest but forms cycle
 Discard it
 w(F, A) is smallest but forms cycle
 Discard it
 choose e = (FE)

Solved Paper (2017-18)SP–10 A (CS/IT-Sem-3)

A

E

B

D

F

12

17 7

19 10
14

15 2 C

1

6

The final minimum spanning tree is :

A

E

B

D

F

12

19 10
C

1

6

d. Define tree, binary tree, complete binary tree and full binary
tree. Write algorithm or function to obtain traversals of a
binary tree in preorder, postorder and inorder.

Ans. Tree : A tree T is a finite non-empty set of elements. One of these
elements is called the root, and the remaining elements, if any is
partitioned into trees is called subtree of T. A tree is a non-linear
data structure.
Binary tree :

1. A binary tree T is defined as a finite set of elements called nodes,
such that :
a. T is empty (called the null tree).
b. T contains a distinguished node R, called the root of T, and the

remaining nodes of T form an ordered pair of disjoint binary
trees T1 and T2.

Complete binary tree : A tree is called a complete binary tree if
tree satisfies following conditions :

a. Each node has exactly two children except leaf node.
b. All leaf nodes are at same level.
c. If a binary tree contains m nodes at level l, it contains atmost 2m

nodes at level l + 1.
Full binary tree :
A full binary tree is formed when each missing child in the binary
tree is replaced with a node having no children.
Algorithm for preorder traversal :
Preorder (INFO, LEFT, RIGHT, ROOT)

1. [Initially push NULL onto STACK, and initialize PTR]
Set TOP = 1, STACK [1] = NULL and PTR = ROOT

2. Repeat steps 3 to 5 while PTR  NULL
3. Apply process to INFO [PTR]
4. [Right child?]

If RIGHT [PTR]  NULL
Then

Data Structure SP–11 A (CS/IT-Sem-3)

[Push on STACK]
Set TOP = TOP + 1 and
STACK [TOP] = RIGHT [PTR]
Endif

5. [Left child?]
If LEFT [PTR]  NULL then
set PTR = LEFT[PTR]
Else
[Pop from STACK]
set PTR = STACK[TOP] and TOP = TOP – 1
Endif
End of step 2

6. Exit
Algorithm for inorder traversal :
Inorder (INFO, LEFT, RIGHT, ROOT)

1. [Push NULL onto STACK and initialize PTR]
Set TOP = 1, STACK[1] = NULL and PTR = ROOT

2. Repeat while PTRNULL
[Push leftmost path onto STACK]

a. Set TOP = TOP + 1 and
STACK [TOP] = PTR

b. Set PTR = LEFT [PTR]
End loop

3. Set PTR = STACK[TOP] and TOP = TOP – 1
4. Repeat steps 5 to 7 while PTR  NULL
5. Apply process to INFO[PTR]
6. [Right Child?] If RIGHT [PTR]  NULL

Then
a. Set PTR = RIGHT [PTR]
b. goto step 2

Endif
7. Set PTR = STACK[TOP] and TOP = TOP – 1

End of Step 4 Loop
8. Exit

Algorithm for postorder traversal :
Postorder (INFO, LEFT, RIGHT, ROOT)

1. [Push NULL onto STACK and initialize PTR]
Set TOP = 1, STACK[1] = NULL and PTR = ROOT

2. [Push leftmost path onto STACK]
Repeat steps 3 to 5 while PTR  NULL

3. Set TOP = TOP + 1 and STACK [TOP] = PTR
[Pushes PTR on STACK]

4. If RIGHT [PTR]  NULL
Then

Solved Paper (2017-18)SP–12 A (CS/IT-Sem-3)

Set TOP = TOP + 1 and STACK [TOP] = RIGHT [PTR]
Endif

5. Set PTR = LEFT [PTR]
End of step 2 loop

6. Set PTR = STACK [TOP] and TOP = TOP – 1
[Pops node from STACK]

7. Repeat while PTR > 0
a. Apply process to INFO [PTR]
b. Set PTR = STACK [TOP] and TOP = TOP – 1

End loop
8. If PTR < 0 Then
a. Set PTR = – PTR
b. goto step 2

Endif
9. Exit

e. Construct a B-tree on following sequence of inputs.
10, 20, 30, 40, 50, 60, 70, 80, 90
Assume that the order of the B-tree is 3.

Ans. 10, 20, 30, 40, 50, 60, 70, 80, 90
Order of the B-tree is 3.

1. Insert 10 :

10

2. Insert 20 :

10 20

3. Insert 30 :

20

10 30

4. Insert 40 :

20

10 30 40

Data Structure SP–13 A (CS/IT-Sem-3)

5. Insert 50 : 6. Insert 60 :

20

30 50

10 40

20

30 50

10 40

60

7. Insert 70 : 8. Insert 80 :
20

30 60

10 40

50 70

20

30 60

10 40

50 70 80
9. Insert 90 :

20

30 60

10 40

50 80

70 90
This is final B-tree of order 3.

Section-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. What are the various asymptotic notations ? Explain Big O

notation.

Solved Paper (2017-18)SP–14 A (CS/IT-Sem-3)

Ans. Various asymptotic notations :
1. -Notation (Same order)
2. Oh-Notation (Upper bound)
3. -Notation (Lower bound)
4. Little - Oh notation (o)
5. Little omega notation ()

Big Oh-Notation :
1. Big-Oh is formal method of expressing the upper bound of an

algorithm’s running time.
2. It is the measure of the longest amount of time it could possibly

take for the algorithm to complete.
3. More formally, for non-negative functions, f (n) and g(n), if there

exists an integer n0 and a constant c > 0 such that for all integers
n > n0.

f (n)  cg(n)
4. Then, f (n) is Big-Oh of g (n). This is denoted as : f (n)  O(g (n)) i.e.,

the set of functions which, as n gets large, grow faster than a
constant time f (n).

cg(n)

f(n)

n

f(n) = O(g(n))

n0 Fig. 2.
b. Write an algorithm to insert a node at the end in a circular

linked list.
Ans.

1. If PTR = NULL
2. Write OVERFLOW
3. Go to Step 1

[END OF IF]
4. SET NEW_NODE = PTR
5. SET PTR = PTR -> NEXT
6. SET NEW_NODE -> DATA = VAL
7. SET NEW_NODE -> NEXT = HEAD
8. SET TEMP = HEAD
9. Repeat Step 10 while TEMP -> NEXT != HEAD

10. SET TEMP = TEMP -> NEXT
[END OF LOOP]

11. SET TEMP -> NEXT = NEW_NODE
12. EXIT

Data Structure SP–15 A (CS/IT-Sem-3)

4. Attempt any one part of the following : (7 × 1 = 7)
a. What is a stack ? Write a C program to reverse a string

using stack.
Ans.

1. A stack is one of the most commonly used data structure.
2. A stack, also called Last In First Out (LIFO) system, is a linear list

in which insertion and deletion can take place only at one end,
called top.

3. This structure operates in much the same way as stack of trays.
4. If we want to remove a tray from stack of trays it can only be

removed from the top only.
5. The insertion and deletion operation in stack terminology are

known as PUSH and POP operations.
Program to reverse a string using stack :
#include<stdio.h>
#include<conio.h>
#include<string.h>
#define MAX 20

int top = – 1;
char stack [MAX];
char pop();

push(char);

main()
{
clrscr();
char str [20];
int i;
printf(“Enter the string : ”);
gets(str);
for(i = 0; i < strlen(str); i++)
push (str [i]);
for(i = 0; i < strlen(str); i++)
str[i] = pop();
printf(“Reversed string is :”);
puts (str);
getch();
}

push (char item)
{
if(top == MAX – 1)
printf(“Stack overflow\n”);
else
stack[++top] = item;
}

Solved Paper (2017-18)SP–16 A (CS/IT-Sem-3)

char pop()
{
if(top == – 1)
printf(“Stack underflow \n”);
else
return stack [top – –];
}

b. Define the recursion. Write a recursive and non-recursive
program to calculate the factorial of the given number.

Ans. Recursion :
1. Recursion is a process of expressing a function that calls itself to

perform specific operation.
2. Indirect recursion occurs when one function calls another function

that then calls the first function.
Program :
#include<stdio.h>
#include<conio.h>
void main()
{
int n, a, b;
clrscr();
printf(“Enter any number\n”);
scanf(“%d”, &n);
a = recfactorial(n);
printf(“The factorial of a given number using recursion is %d
\n”, a);
b = nonrecfactorial(n);
printf(“The factorial of a given number using nonrecursion is
%d ”, b);
getch();
}
int recfactorial(int x)
{
int f;
if(x == 0)
{
return(1);
}
else
{
f = x * recfactorial(x – 1);
return(f);
}
}
int nonrecfactorial(int x)

Data Structure SP–17 A (CS/IT-Sem-3)

{
int i, f = 1;
for(i = 1; i <= x; i++)
{
f = f * i;
}
return(f);
}

5. Attempt any one part of the following : (7 × 1 = 7)
a. Draw a binary tree with following traversals :

Inorder : B C A E G D H F I J
Preorder : A B C D E F G H I J

Ans. From preorder traversal, we get root node to be A.

A

EGDHFIJBC

Now considering left subtree.
Observing both the traversal we can get B as root node and C as
right child.

A

EGDHFIJB

C

Now, consider the right subtree.
Preorder traversal is DEGFHIJ, which shows D is root node.
Inorder traversal is EGDHFIJ, which shows EG is left subtree and
HFIJ is right subtree.

A

D

EGC

B

HFIJ

Now, consider the left subtree of D.
Preorder traversal is EG and inorder traversal is EG.
 E is root node and G is right subtree.

A

D

EC

B

HFIJ

G
Similarly, following the same procedure, we finally get

Solved Paper (2017-18)SP–18 A (CS/IT-Sem-3)

A

D

EC

B

F

I

J
G

H

b. Consider the following AVL tree and insert 2, 12, 7 and 10 as
new node. Show proper rotation to maintain the tree as
AVL.

3

4

6

8

119

5

7

10

Fig. 3.

Ans. Given tree :
– 1

– 1

0

0

5

8

6 10

4 7
9 11

3

Balanced tree
Insert 2 :

8

6
10

4
7 9 11

3 5

– 2

+ 2

1

0

2

1

Data Structure SP–19 A (CS/IT-Sem-3)

Tree is unbalanced, now LL rotation is required to balance it.

8

4 10

1196

7

3

2

+ 1

01

00

0 0

0

0 5
0

Now the tree is balanced.
Insert 12 :

8

4 10

11963

2

0

0
1

– 10

0 – 1

7
0

5
0

0 12
0

Tree is balanced, so there is no need to balance the tree.
Insert 7 : 7 is already in the tree hence it cannot be inserted in the AVL
tree.
Insert 10 : 10 is also in the tree hence it cannot be inserted in the AVL tree.

6. Attempt any one part of the following : (7 × 1 = 7)
a. What is a threaded binary tree ? Explain the advantages of

using a threaded binary tree.
Ans.

1. To make traversal of nodes more efficient we can utilize space
occupied by the NULL pointers in the leaf nodes and internal
nodes having only one child node.

2. These pointers can be modifies to point to their corresponding in-
order successor, in-order predecessor or both.

3. These modified pointers are known as threads and binary trees
having such type of pointers are known as threaded binary tree.

Solved Paper (2017-18)SP–20 A (CS/IT-Sem-3)

A

B C

F G D E

H

Null Null Null Null

Null

(a) Right threaded binary tree.

A

B C

F G D E

H

Null Null

Null

Null Null

(b) Left threaded binary tree

A

B C

F G D E

H

NullNull

(c) Fully threaded binary tree
Fig. 4.

Advantages of using threaded binary tree :
1. In threaded binary tree the traversal operations are very fast.
2. In threaded binary tree, we do not require stack to determine the

predecessor and successor node.
3. In a threaded binary tree, one can move in any direction i.e., upward

or downward because nodes are circularly linked.
4. Insertion into and deletions from a threaded tree are all although

time consuming operations but these are very easy to implement.

Data Structure SP–21 A (CS/IT-Sem-3)

b. Describe Dijkstra’s algorithm for finding shortest path.
Describe its working for the graph given below.

A

E

D

10
100

30
10

60

20

50

B

C

Fig. 5.

Ans. Algorithm :
a. Dijkstra’s algorithm, is a greedy algorithm that solves the single-

source shortest path problem for a directed graph G = (V, E) with
non-negative edge weights, i.e., we assume that w(u, v)  0 each
edge (u, v)  E.

b. Dijkstra’s algorithm maintains a set S of vertices whose final
shortest-path weights from the source s have already been
determined.

c. That is, for all vertices v  S, we have d[v] = (s, v).
d. The algorithm repeatedly selects the vertex u  V – S with the

minimum shortest-path estimate, inserts u into S, and relaxes all
edges leaving u.

e. We maintain a priority queue Q that contains all the vertices in
v – s, keyed by their d values.

f. Graph G is represented by adjacency list.
g. Dijkstra’s always chooses the “lightest or “closest” vertex in V – S to

insert into set S, that it uses as a greedy strategy.
Numerical :

A

E

D

10
100

30 10

60

20

50

B

C

Extract min (A) :

A

E

D

B

C

0







A

0

B



C



D



E



10
100

30 10

60

20

50

Solved Paper (2017-18)SP–22 A (CS/IT-Sem-3)

All edges leaving A :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30 10

50

20

60

100

Extract min (B) :

A

E

D

B

C

A

0

B

10



C





D

30



E

100



0

10

100

30


10

30

50

20

60

10

100

All edges leaving B :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

10

1030

100

60

20

50

Extract min(D) :

A

E

D

B

C

A

0

B

10



C



60



D

30

30



E

100

100



0

10

100

30

60

100
10

50

20

60

30 10

Data Structure SP–23 A (CS/IT-Sem-3)

All edges leaving (D) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

30

50

10

10

20

50

30

60

100
90

Extract min(C) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90



0

10

90

30

50

30

50

20

60

10

10

100

All edges leaving C :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10
60

30

50

10

10

50

20

60

30

100

Extract min(E) :

A

E

D

B

C

A

0

B

10



C



60

50



D

30

30



E

100

100

90

60



0

10

60

30

50

10

1030

20

50

100

60

Solved Paper (2017-18)SP–24 A (CS/IT-Sem-3)

Shortest path :

A

E

D

B

C

0

10

60

30
50

30

10

10

20

7. Attempt any one part of the following : (7 × 1 = 7)
a. Write short notes on :
i. Hashing technique

ii. Garbage collection
Ans.

i. Hashing technique :
1. Hashing technique is one of the complex searching techniques. In

this technique, we consider a class of search techniques whose
search time is dependent on the number of entries available in the
table.

2. Here, we fix the position of the key (element) into the table or the
file, which is determined by the hash function.

3. The function in which we use this key is known as the hashing
function.

4. For example, if we want to search a number from the ten numbers
of a file, then we must find the number throughout this range from
the first number to the tenth number. When we use the key for
fixing its position in a table, then the number can be searched very
easily.

ii. Garbage collection :
1. When some memory space becomes reusable due to the deletion of

a node from a list or due to deletion of entire list from a program
then we want the space to be available for future use.

2. One method to do this is to immediately reinsert the space into the
free-storage list. This is implemented in the linked list.

3. This method may be too time consuming for the operating system
of a computer.

4. In another method, the operating system of a computer may
periodically collect all the deleted space onto the free storage list.
This type of technique is called garbage collection.

5. Garbage collection usually takes place in two steps. First the
computer runs through all lists, tagging those cells which are
currently in use and then the computer runs through the memory,
collecting all untagged space onto the free storage list.

6. The garbage collection may take place when there is only some
minimum amount of space or no space at all left in the free storage
list or when the CPU is idle and has time to do the collection.

Data Structure SP–25 A (CS/IT-Sem-3)

b. Explain the following : (7 × 1 = 7)
i. Heap sort

ii. Radix sort
Ans.

i. Heap sort :
1. Heap sort finds the largest element and puts it at the end of

array, then the second largest item is found and this process is
repeated for all other elements.

2. The general approach of heap sort is as follows :
a. From the given array, build the initial max heap.
b. Interchange the root (maximum) element with the last

element.
c. Use repetitive downward operation from root node to

rebuild the heap of size one less than the starting.
d. Repeat step (a) and (b) until there are no more elements.

ii. Radix sort :
1. Radix sort is a small method that many people uses when

alphabetizing a large list of names (here Radix is 26, 26 letters
of alphabet).

2. Specifically, the list of name is first sorted according to the first
letter of each name, i.e., the names are arranged in 26 classes.

3. Intuitively, one might want to sort numbers on their most
significant digit.

4. But radix sort do counter-intuitively by sorting on the least
significant digits first.

5. On the first pass entire numbers sort on the least significant
digit and combine in an array.

6. Then on the second pass, the entire numbers are sorted again
on the second least-significant digits and combine in an array
and so on.



Data Structure SP–1 A (CS/IT-Sem-3)

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2018-19
DATA STRUCTURES

Time : 3 Hours Max. Marks : 70

Note : Attempt all sections. Assume missing data, if any.

Section – A

1. Attempt all questions in brief. (2 × 7 = 14)
a. How the graph can be represented in memory ? Explain

with suitable example.

b. Write the syntax to check whether a given circular queue is
full or empty ?

c. Draw a binary tree for the expression : A * B – (C + D) * (P/Q)

d. Differentiate between overflow and underflow condition in
a linked list.

e. What do you understand by stable and in-place sorting ?

f. Number of nodes in a complete tree is 100000. Find its depth.

g. What is recursion ? Give disadvantages of recursion.

Section-B

2. Attempt any three of the following : (7 × 3 = 21)
a. What do you understand by time and space tradeoff ? Define

the various asymptotic notations. Derive the O-notation
for linear search.

b. Consider the following infix expression and convert into
reverse polish notation using stack. A + (B * C – (D/E ^ F) *
H)

c. Explain Huffman algorithm. Construct Huffman tree for
MAHARASHTRA with its optimal code.

Solved Paper (2018-19)SP–2 A (CS/IT-Sem-3)

d. What is height balanced tree ? Why height balancing of tree
is required ? Create an AVL tree for the following elements :
a, z, b, y, c, x, d, w, e, v, f.

Ans. Refer Q. 5.25, Page 5–33A, Unit-5.

e. Write the Floyd Warshall algorithm to compute the all pair
shortest path. Apply the algorithm on following graph :

n2

n1

n5

n6

n3

n4

7
2

8

5 3

1
3

2
8

6

Fig. 1.

Section-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. Write a program in C to delete a specific element in single

linked list. Double linked list takes more space than single
linked list for sorting one extra address. Under what
condition, could a double linked list more beneficial than
single linked list.

b. Suppose multidimensional arrays P and Q are declared as
P(– 2: 2, 2: 22) and Q(1: 8, – 5: 5, – 10 : 5) stored in column major
order

i. Find the length of each dimension of P and Q
ii. The number of elements in P and Q

iii. Assuming base address (Q) = 400, W = 4, find the effective
indices E1, E2, E3 and address of the element Q[3, 3, 3].

4. Attempt any one part of the following : (7 × 1 = 7)
a. Explain Tower of Hanoi problem and write a recursive

algorithm to solve it.

b. Explain how a circular queue can be implemented using
arrays. Write all functions for circular queue operations.

5. Attempt any one part of the following : (7 × 1 = 7)
a. Write the algorithm for deletion of an element in binary

search tree.

Data Structure SP–3 A (CS/IT-Sem-3)

b. Construct a binary tree for the following :
Inorder : Q, B, K, C, F, A, G, P, E, D, H, R
Preorder : G, B, Q, A, C, K, F, P, D, E, R, H
Find the postorder of the tree.

6. Attempt any one part of the following : (7 × 1 = 7)
a. By considering vertex ‘1’ as source vertex, find the shortest

paths to all other vertices in the following graph using
Dijkstra’s algorithms. Show all the steps.

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

Fig. 2.

b. Explain in detail about the graph traversal techniques with
suitable examples.

7. Attempt any one part of the following : (7 × 1 = 7)
a. Write algorithm for quick sort. Trace your algorithm on

the following data to sort the list: 2, 13, 4, 21, 7, 56, 51, 85, 59,
1, 9, 10. How the choice of pivot elements effects the efficiency
of algorithm ?

b. Construct a B-tree of order 5 created by inserting the
following elements 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4,
16, 18, 24, 25, 19. Also delete elements 6, 23 and 3 from the
constructed tree.



Solved Paper (2018-19)SP–4 A (CS/IT-Sem-3)

SOLUTION OF PAPER (2018-19)

Note : Attempt all sections. Assume missing data, if any.

Section – A

1. Attempt all questions in brief. (2 × 7 = 14)
a. How the graph can be represented in memory ? Explain

with suitable example.
Ans. Graph can be represented in memory :

1. Matrix representation
2. Linked representation

For example : Consider the following directed graph :

Fig. 1.

v1 v4

v3v2

Matrix representation :

1 2 3 4

1

2

3

4

0 0 0 1
1 0 1 0
0 0 0 1
0 1 0 0

v v v v

v
v
v
v

 
 
 
 
 
 

Linked representation :

Fig. 2.

v1

/

/

/

v2

v3

v4

v4

v1

v4

v2

v3

/

b. Write the syntax to check whether a given circular queue is
full or empty ?

Ans. Syntax to check circular queue is full :
If ((front == MAX – 1) || (front == 0 && rear == MAX – 1))
Syntax to check circular queue is empty :
If (front == 0 && rear == – 1)

c. Draw a binary tree for the expression : A * B – (C + D) * (P/Q)

Data Structure SP–5 A (CS/IT-Sem-3)

1. Overflow condition occurs in
linked list when data are
inserted into a list but there
is no available space.

2. In linked list overflow occurs
when AVAIL = NULL and
there is an insertion
operation.

Underflow condition occurs when
we delete data from empty linked
list.

In linked list underflow occurs when
START = NULL and there is a
deletion operation.

Ans.
–

*

A B +

*

/

C D P Q

Fig. 3.

d. Differentiate between overflow and underflow condition in
a linked list.

Ans.

S. No. Overflow Underflow

e. What do you understand by stable and in-place sorting ?
Ans. Stable sorting : Stable sorting is an algorithm where two objects

with equal keys appear in the same order in sorted output as they
appear in the input unsorted array.
In-place sorting : An in-place sorting is an algorithm that does
not need an extra space and produces an output in the same memory
that contains the data by transforming the input ‘in-place’. However,
a small constant extra space used for variables is allowed.

f. Number of nodes in a complete tree is 100000. Find its depth.
Ans. Number of nodes in a complete tree = 100000

We know that, n = 2h + 1 – 1
(n + 1) = 2h + 1

log2(n + 1) = h + 1
log2(n + 1) – 1 = h

Putting n = 100000
h = log2(100000 + 1) – 1
h = 15 (approx)

g. What is recursion ? Give disadvantages of recursion.
Ans. Recursion : Recursion is the process of expressing a function that

calls itself to perform specific operation.

Solved Paper (2018-19)SP–6 A (CS/IT-Sem-3)

Disadvantages of recursion :
1. Recursive solution is always logical and it is very difficult to trace,

debug and understand.
2. Recursion takes a lot of stack space, usually not considerable when

the program is small and running on a PC.
3. Recursion uses more processor time.

Section-B

2. Attempt any three of the following : (7 × 3 = 21)
a. What do you understand by time and space tradeoff ? Define

the various asymptotic notations. Derive the O-notation
for linear search.

Ans. Time-space trade-off :
1. The time-space trade-off refers to a choice between algorithmic

solutions of data processing problems that allows to decrease the
running time of an algorithmic solution by increasing the space to
store data and vice-versa.

2. Time-space trade-off is basically a situation where either space
efficiency (memory utilization) can be achieved at the cost of time
or time efficiency (performance efficiency) can be achieved at the
cost of memory.
For Example : Suppose, in a file, if data stored is not compressed,
it takes more space but access takes less time. Now if the data
stored is compressed the access takes more time because it takes
time to run decompression algorithm.
Various asymptotic notation :

1. -Notation (Same order) : This notation bounds a function to
within constant factors.

2. Oh-Notation (Upper bound) : It is the measure of the longest
amount of time it could possibly take for the algorithm to complete.

3. -Notation (Lower bound) : This notation gives a lower bound
for a function to within a constant factor.

4. Little - Oh notation (o) : It is used to denote an upper bound that
is asymptotically tight because upper bound provided by O-notation
is not tight.

5. Little omega notation () : It is used to denote lower bound that
is asymptotically tight.
Derivation :
Best case : In the best case, the desired element is present in the
first position of the array, i.e., only one comparison is made.
So, T(n) = O(1).
Average case : Here we assume that ITEM does appear, and that
is equally likely to occur at any position in the array. Accordingly
the number of comparisons can be any of the number 1, 2, 3,, n
and each number occurs with the probability p = 1/n. Then

T(n) = 1 . (1/n) + 2 . (1/n) + 3 . (1/n) + n . (1/n)

Data Structure SP–7 A (CS/IT-Sem-3)

= (1 + 2 + 3 + + n) . (1/n)
= n . (n + 1)/2 . (1/n) = (n + 1)/2
= O((n + 1)/2)  O(n)

Worst case : Worst case occurs when ITEM is the last element in
the array or is not there at all. In this situation n comparison is
made.
So, T(n) = O(n + 1)  O(n)

b. Consider the following infix expression and convert into
reverse polish notation using stack. A + (B * C – (D/E ^ F) *
H)

Ans. A + (B*C – (D/E ^ F)*H)

Character Stack Postfix

A (A
+ (+ A
((+ (A
B (+ (AB
* (+ (* AB
C (+ (* ABC
– (+ (– (ABC*
((+ (– (ABC*
D (+ (– (ABC*D
/ (+ (– (/ ABC*D
E (+ (– (/ ABC*DE
^ (+ (– (/^ ABC*DE
F (+ (– (/^ ABC*DEF
) (+ (– (/^ ABC*DEF
* (+ (– * ABC*DEF ^/
H (+ (– * ABC*DEF ^/ H

Resultant reverse polish expression : ABC * DEF ^ / H

c. Explain Huffman algorithm. Construct Huffman tree for
MAHARASHTRA with its optimal code.

Ans. Huffman algorithm :
1. Suppose, there are n weights W1, W2,, Wn.
2. Take two minimum weights among the n given weights. Suppose

W1 and W2 are first two minimum weights then subtree will be :

W + W1 2

W 1 W2

Fig. 4.
3. Now the remaining weights will be W1 + W2, W3, W4,, Wn.
4. Create all subtree at the last weight.

Solved Paper (2018-19)SP–8 A (CS/IT-Sem-3)

Numerical :
M

1

A

4

H

2

R

2

S

1

T

1
, , , , ,

Arrange all the number in ascending order.

M

1

S

1

T

1

H

2

R

2

A

4
, , , , ,

T

1
2

H

2

R

2

A

4
, , , ,

M

1

S

1

H

2

R

2
, , 3

2T

1
M

1

S

1

A

4
,

3

2T

1
M

1

S

1

4

H

2

R

2

, , A

4

A

4
4

H

2

R

2

,
7

3

T

1

2

M

1

S

1

11

7

43

A

4

2T

1

M

1

S

1

H

2

R

2

0 1

0 1

0 1

0 110

Data Structure SP–9 A (CS/IT-Sem-3)

Character Code

M 1010

A 0

H 110

R 111

S 1011

T 100

Optimal code for MAHARASHTRA is :
101001100111010111101001110

d. What is height balanced tree ? Why height balancing of tree
is required ? Create an AVL tree for the following elements :
a, z, b, y, c, x, d, w, e, v, f.

Ans. Height balanced tree :
i. An AVL (or height balanced) tree is a balanced binary search tree.
ii. In an AVL tree, balance factor of every node is either –1, 0 or +1.

iii. Balance factor of a node is the difference between the heights of
left and right subtrees of that node.
Balance factor = height of left subtree – height of right subtree
Height balancing of tree is required : Height balancing of tree
is required to implement an AVL tree. Each node must contain a
balance factor, which indicates its states of balance relative to its
sub-tree.
Numerical :
Insert a :

a
0

Insert z :

a

z

–1

0

Insert b :

a z

b
0

0RL rotation
a

z

–2

1

b0

0

Solved Paper (2018-19)SP–10 A (CS/IT-Sem-3)

Insert y :

a z

b
– 1

0 1

y 0
Insert c :

a y

b
– 1

0RR rotation 0
a z

b
– 2

0 2

y 1

c
0

c z0
0

Insert x :

b y

c
1RL rotation 0

a y

b
– 2

0 1

c
x z0

0– 1
z

0

a
0

x
0

Insert d :

b y

c
– 1

1 1

x za
0

1
0

d 0

Insert w :

b d

c
1LR rotation 1

x z0 0

–1

a
0

b y

c
– 2

1 2

x za
0

2
0

d –1

w
0

w y
0 0

Data Structure SP–11 A (CS/IT-Sem-3)

Insert e :

b d

c
0

x z
0

0

–1

a
0

w y
0 0

–1

e
0

Insert v :

x

RL rotationb y

c
– 2

1 1

x za
0

1
1

w y
01

v
0

c
0

c
0

db
1

a
0

–1

e0

0

w

yv
1

z0

0

–1

Insert f :

x

c

db
1

a
0

–1

e

w

yv

z
0

0

–1–1

–1

–1

f
0

1

No, rebalancing required. So, this is final AVL search tree.

e. Write the Floyd Warshall algorithm to compute the all pair
shortest path. Apply the algorithm on following graph :

n2

n1

n5

n6

n3

n4

7
2

8

5 3

1
3

2
8

6

Fig. 5.

Solved Paper (2018-19)SP–12 A (CS/IT-Sem-3)

Ans. Floyd’s Warshall algorithm :
Floyd Warshall (w) :

1. n  rows [w]
2. D(0)  w
3. for k  1 to n
4. do for i  1 to n
5. do for j  1 to n

6. do ()k
ijd  (–1) (–1) (–1)min(,)k k k

ij ik kjd d d

7. return D(n)

Numerical : We cannot solve this using Floyd Warshall algorithm
because the given graph is undirected.

Section-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. Write a program in C to delete a specific element in single

linked list. Double linked list takes more space than single
linked list for sorting one extra address. Under what
condition, could a double linked list more beneficial than
single linked list.

Ans.
#include <stdlib.h>
// A linked list node
struct Node
{
int data;
struct Node *next;
};
/* Given a reference (pointer to pointer) to the head of a list
and an int, inserts a new node on the front of the list. */
void push(struct Node** head_ref, int new_data)
{
struct Node* new_node = (struct Node*) malloc(sizeof(struct
Node));
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
/* Given a reference (pointer to pointer) to the head of a list
and a position, deletes the node at the given position */
void deleteNode(struct Node **head_ref, int position)
{
// If linked list is empty
if (*head_ref == NULL)
return;
// Store head node

Data Structure SP–13 A (CS/IT-Sem-3)

struct Node* temp = *head_ref;
// If head needs to be removed
if (position == 0)
{
*head_ref = temp->next; // Change head
free(temp); // free old head
return;
}
// Find previous node of the node to be deleted
for (int i = 0; temp != NULL && i < position – 1; i++)
temp = temp->next;
// If position is more than number of nodes
if (temp == NULL || temp->next == NULL)
return;
// Node temp->next is the node to be deleted
// Store pointer to the next of node to be deleted
struct Node *next = temp->next->next;
// Unlink the node from linked list
free(temp->next); // Free memory
temp->next = next; // Unlink the deleted node from list
}
// This function prints contents of linked list starting from
// the given node
void printList(struct Node *node)
{
while (node != NULL)
{
printf(“%d ”, node->data);
node = node->next;
}
}
/* Program to test above functions*/
int main()
{
/* Start with the empty list */
struct Node* head = NULL;
push(&head, 7);
push(&head, 1);
push(&head, 3);
push(&head, 2);
push(&head, 8);
puts(“Created Linked List: ”);
printList(head);
deleteNode(&head, 4);
puts(“\nLinked List after Deletion at position 4: ”);
printList(head);

Solved Paper (2018-19)SP–14 A (CS/IT-Sem-3)

return 0;
}
Double linked list is more beneficial than single linked list
because :

1. A double linked list can be traversed in both forward and backward
direction.

2. The delete operation in double linked list is more efficient if pointer
to the node to be deleted is given.

3. In double linked list, we can quickly insert a new node before a
given node.

4. In double linked list, we can get the previous node using previous
pointer but in singly liked list we traverse the list to get the previous
node.

b. Suppose multidimensional arrays P and Q are declared as
P(– 2: 2, 2: 22) and Q(1: 8, – 5: 5, – 10 : 5) stored in column major
order

i. Find the length of each dimension of P and Q
ii. The number of elements in P and Q

iii. Assuming base address (Q) = 400, W = 4, find the effective
indices E1, E2, E3 and address of the element Q[3, 3, 3].

Ans.
i. The length of a dimension is obtained by

Length = Upper Bound – Lower Bound + 1
Hence, the lengths of the dimension of P are,
L1 = 2 – (– 2) + 1 = 5; L2 = 22 – 2 + 1 = 21
The lengths of the dimension of Q are,
L1 = 8 – 1 + 1 = 8; L2 = 5 – (– 5) + 1 = 11; L3 = 5 – (– 10) + 1 = 16

ii. Number of elements in P = 21 × 5 = 105 elements
Number of elements in Q = 8 × 11 × 16 = 1408 elements

iii. The effective index Ei is obtained from Ei = ki – LB, where ki is the
given index and LB, is the Lower Bound. Hence,
E1 = 3 – 1 = 2; E2 = 3 – (– 5) = 8; E3 = 3 – (– 10) = 13
The address depends on whether the programming language stores
Q in row major order or column major order. Assuming Q is stored
in column major order.
E3L2 = 13 × 11 = 143
E3L2 + E2 = 143 + 8 = 151
(E3L2)L1 = 151 * 8 = 1208
(E2L2+E2)L1 + E1 = 1208 + 2 = 1210
Therefore, LOC(Q[3,3,3]) = 400 + 4(1210) = 400 + 4840 = 5240

4. Attempt any one part of the following : (7 × 1 = 7)
a. Explain Tower of Hanoi problem and write a recursive

algorithm to solve it.

Data Structure SP–15 A (CS/IT-Sem-3)

Ans. Tower of Hanoi problem :
1. Suppose three pegs, labelled A, B and C is given, and suppose on

peg A, there are finite number of n disks with decreasing size.
2. The object of the game is to move the disks from peg A to peg C

using peg B as an auxiliary.
3. The rule of game is follows :
a. Only one disk may be moved at a time. Specifically only the top disk

on any peg may be moved to any other peg.
b. At no time, can a larger disk be placed on a smaller disk.

A B C

Fig. 6.
The solution to the Tower of Hanoi problem for n = 3.

(6) B C  (7) A C

A B C A B C

A B C A B C A B C

A B C A B C A B C

Initial (1) A C (2) A B

(3) C B (4) A C (5) B A

Fig. 7.
Total number of steps to solve Tower of Hanoi problem of n disk

= 2n – 1 = 23 – 1 = 7

Algorithm :
TOWER (N, BEG, AUX, END)

This procedure gives a recursive solution to the Tower of Hanoi
problem for N disks.

1. If N = 1, then :

a. Write: BEG  END

b. Return

[End of If structure]
2. [Move N – 1 disk from peg BEG to peg AUX]

Solved Paper (2018-19)SP–16 A (CS/IT-Sem-3)

Call TOWER (N – 1, BEG, END, AUX)
3. Write: BEG  END
4. [Move N – 1 disk from peg AUX to peg END]

Call TOWER (N – 1, AUX, BEG, END)
5. Return

b. Explain how a circular queue can be implemented using
arrays. Write all functions for circular queue operations.

Ans. Implementation of circular queue using array :
#include<stdio.h>
#include<conio.h>
#include<process.h>
#define MAX 10

typedef struct {
int front, rear ;
int elements [MAX];
} queue;

void createqueue (queue *aq) {
aq -> front = aq -> rear = – 1
}
int isempty (queue *aq)
{

if(aq -> front = = – 1)
return 1;

else
return 0;

}
int isfull (queue *aq) {

if(((aq -> front = = 0) && (aq -> rear = = MAX – 1))
||(aq - > front == aq - > rear + 1))

return 1;
else

return 0;
}
void insert (queue *aq, int value) {

if(aq -> front = = – 1)
aq -> front = aq -> rear = 0;

else
aq -> rear = (aq -> rear + 1) % MAX;
aq -> element [aq -> rear] = value;

}
int delete (queue *aq) {

int temp;
temp = aq -> element [aq -> front];
if(aq -> front = = aq ->rear)
aq -> front = aq -> rear = – 1;
else

Data Structure SP–17 A (CS/IT-Sem-3)

aq -> front = (aq -> front + 1) % MAX ;
return temp;
}

void main()
{

int ch, elmt;
queue q;
create queue (&q);
while (1) {
printf(“1. Insertion \n”);
printf(“2. Deletion \n”);
printf(“3. Exit \n”);
printf(“Enter your choice”);
scanf(“%d”,&ch) ; .
switch (ch)

{
case 1:
if(isfull (&q))
{
printf (“queue is full”);
getch();
}
else
{
printf(“Enter value”);
scanf(“%d”, &elmt) ;
insert (&q, elmt) ;
}
break;
case 2: if (isempty (&q))
{
printf(“queue empty”);
getch();
}
else
{
printf(“Value deleted is % d”, delete (&q));
getch();
}
break;
case 3:
exit(1);

}
} }
Function for circular queue operations :
Function to create circular queue :
void Queue :: enQueue(int value)

Solved Paper (2018-19)SP–18 A (CS/IT-Sem-3)

{
if ((front == 0 && rear == size – 1) ||(rear == (front – 1)%(size – 1)))
{
printf(“\nQueue is Full”);
return;
}
else if (front == –1) /* Insert First Element */
{
front = rear = 0;
arr[rear] = value;
}
else if (rear == size–1 && front != 0)
{
rear = 0;
arr[rear] = value;
}
else
{
rear++;
arr[rear] = value;
}
}
Function to delete element from circular queue :
int Queue :: deQueue()
{
if (front == –1)
{
printf(“\nQueue is Empty”);
return INT_MIN;
}
int data = arr[front];
arr[front] = – 1;
if (front == rear)
{
front = – 1;
rear = – 1;
}
else if (front == size – 1)
front = 0;
else
front++;
return data;
}

5. Attempt any one part of the following : (7 × 1 = 7)
a. Write the algorithm for deletion of an element in binary

search tree.

Data Structure SP–19 A (CS/IT-Sem-3)

Ans. DEL(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)
A binary search tree T is in memory, and an ITEM of information
is given. This algorithm deletes ITEM from the tree.

1. [Find the locations of ITEM and its parent]
Call FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR)

2. [ITEM in tree ?]
If LOC = NULL, then write ITEM not in tree, and Exit.

3. [Delete node containing ITEM]
If RIGHT[LOC]  NULL and LEFT[LOC]  NULL, then :
Call CASEB(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
Else :
Call CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
[End of If structure]

4. [Return deleted node to the AVAIL list]
Set LEFT[LOC] := AVAIL and AVAIL := LOC

5. Exit.

b. Construct a binary tree for the following :
Inorder : Q, B, K, C, F, A, G, P, E, D, H, R
Preorder : G, B, Q, A, C, K, F, P, D, E, R, H
Find the postorder of the tree.

Ans. Step 1 : In preorder traversal root is the first node. So, G is the root
node of the binary tree. So,

G
root

Step 2 : We can find the node of left sub-tree and right sub-tree
with inorder sequence. So,

G

Q, B, K, C, F, A P, E, D, H, R

Step 3 : Now, the left child of the root node will be the first node
in the preorder sequence after root node G. So,

Q

B

G

K, C, F, A

P, E, D, H, R

Step 4 : In inorder sequence, Q is on the left side of B and A is on
the right side B. So,

Solved Paper (2018-19)SP–20 A (CS/IT-Sem-3)

Q

B

G

K, C, F

P, E, D, H, R

A

Step 5 : In inorder sequence, C is on the left side of A . Now
according to inorder sequence, K is on the left side of C and F is on
the right side of C.

Q

B

G

P, E, D, H, R

A

C

K F

Step 6 : Similarly, we can go further for right side of G.

G

B

Q A

P

E, D, H, R

C

K F

So, the final tree is

G

B

Q A

RE

H

C

K F

D

P

Postorder of tree : Q, K, F, A, B, E, H, R, D, P, G

Data Structure SP–21 A (CS/IT-Sem-3)

6. Attempt any one part of the following : (7 × 1 = 7)
a. By considering vertex ‘1’ as source vertex, find the shortest

paths to all other vertices in the following graph using
Dijkstra’s algorithms. Show all the steps.

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

Fig. 8.

Ans. Initialize :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { }

1 2 3 4 5 6
0     

 

 

0 Q :

EXTRACT – MIN (1) :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { 1 }

1 2 3 4 5 6

0     

 

 

0 Q :

Relax all edges leaving 1 :

2

3

1

4

5

6

9

4

4 5 3

13

12 2

15

S = { 1 }

1 2 3 4 5 6

0     





0

9

9 4 – – –
4

Q :

EXTRACT – MIN (3) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3 }

1 2 3 4 5 6
0     





0

9

9 4 – – –4

Q :

Solved Paper (2018-19)SP–22 A (CS/IT-Sem-3)

Relax all edges leaving 3 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3 }

1 2 3 4 5 6

0     



0

8

9 4 – – –

4 17 8 – 17 –

Q :

EXTRACT – MIN (2) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2 }

1 2 3 4 5 6
0     

0

8

9 4 – – –

4 17 8 – 17 –

Q :



Relax all edges leaving 2 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

20

20 13 –

Q :

EXTRACT – MIN (5) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

20

20 13 –

Q :



Relax all edges leaving 5 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13 8 – 17 –

16

20 13 –

Q :

28

16 28

Data Structure SP–23 A (CS/IT-Sem-3)

EXTRACT – MIN (4) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

28

16

13

28

Q :

Relax all edges leaving 4 :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

18

16

13

28

Q :

18
EXTRACT – MIN (6) :

2

3

1

4

5

6

9

4

4 5 3

13

12
2

15

S = { 1, 3, 2, 5, 4, 6 }

1 2 3 4 5 6

0     0

8

9 4 – – –

4 13
8 – 17 –

16

20 –

18

16

13

28

Q :

18

b. Explain in detail about the graph traversal techniques with
suitable examples.

Ans. Following are the two traversal techniques :
1. Depth First Search (DFS) :

The general idea behind a depth first search beginning at a starting
node A is as follows :

a. First, we examine the starting node A.
b. Then, we examine each node N along a path P which begins at A;

that is, we process neighbour of A, then a neighbour of neighbour
of A, and so on.

c. This algorithm uses a stack instead of queue.
Algorithm :

i. Initialize all nodes to ready state (STATUS = 1).
ii. Push the starting node A onto stack and change its status to the

waiting state (STATUS = 2).

Solved Paper (2018-19)SP–24 A (CS/IT-Sem-3)

iii. Repeat steps (iv) and (v) until queue is empty.
iv. Pop the top node N of stack, process N and change its status to the

processed state (STATUS = 3).
v. Push onto stack all the neighbours of N that are still in the ready

state (STATUS = 1) and change their status to the waiting state
(STATUS = 2).
[End of loop]

vi. End.
For example : Consider the following graph

1 3

2 4
Fig. 9.

Adjacency list of the given graph :
1  2, 3
2  4
3  2
4  3, 1

1. Initially set STATUS = 1 for all vertex
2. Push 1 onto stack and set their STATUS = 2

1
3. Pop 1 from stack, change its STATUS = 1 and

Push 2, 3 onto stack and change their STATUS = 2; DFS = 1

2
3

4. Pop 3 from stack, Push 2, but it is already in the stack; DFS = 1, 3

2
5. Pop 2 from stack, Push 4; DFS = 1, 3, 2

4
6. Pop 4 from stack; DFS = 1, 3, 2, 4

Now, the stack is empty, so the depth first traversal of a given
graph is 1, 3, 2, 4.

2. Breadth First Search (BFS) :
The general idea behind a breadth first search beginning at a
starting node A is as follows :

Data Structure SP–25 A (CS/IT-Sem-3)

a. First we examine the starting node A.
b. Then, we examine all the neighbours of A, and so on.
c. We need to keep track of the neighbours of a node, and that no

node is processed more than once.
d. This is accomplished by using a queue to hold nodes that are waiting

to be processed, and by using a field STATUS which tells us the
current status of any node.
Algorithm : This algorithm executes a breadth first search on a
graph G beginning at a starting node A.

i. Initialize all nodes to ready state (STATUS=1).
ii. Put the starting node A in queue and change its status to the

waiting state (STATUS = 2).
iii. Repeat steps (iv) and (v) until queue is empty.
iv. Remove the front node N of queue. Process N and change the

status of N to the processed state (STATUS = 3).
v. Add to the rear of queue all the neighbours of N that are in the

ready state (STATUS=1) and change their status to the waiting
state
(STATUS = 2).
[End of loop]

vi. End.
For example : Consider the same graph in Fig. 11.
To find the shortest path from node 1 to node 4.
Adjacency list of the graph is :

1 : 2, 3
2 : 4
3 : 2
4 : 1, 3

a. Initially set STATUS=1 for all vertex.
b. Now add ‘1’ to Queue and set STATUS = 2

Queue : 1
c. Remove 1 from Queue and set STATUS = 3

and add 2, 3 in Queue and change their STATUS = 2
BFS = 1 Queue : 2, 3

d. Remove 2, add 4 in Queue
BFS = 1, 2 Queue = 3, 4

e. Remove 3, add 2, but 2 is already visited. So no vertex will be added
in this step

BFS = 1, 2, 3, Queue = 4
f. Remove 4, BFS = 1, 2, 3, 4

Now, the Queue is empty, so breadth first search of a given graph
is 1, 2, 3, 4.

7. Attempt any one part of the following : (7 × 1 = 7)
a. Write algorithm for quick sort. Trace your algorithm on

the following data to sort the list: 2, 13, 4, 21, 7, 56, 51, 85, 59,

Solved Paper (2018-19)SP–26 A (CS/IT-Sem-3)

1, 9, 10. How the choice of pivot elements effects the efficiency
of algorithm ?

Ans. Quick sort algorithm :
QUICK-SORT (A, p, r) :

1. If p < r then
2. q  PARTITION (A, p, r)
3. QUICK-SORT (A, p, q – 1)
4. QUICK-SORT (A, q + 1, r)

PARTITION (A, p, r) :
1. x  A[r]
2. i  p – 1
3. for j  p to r – 1
4. do if A[j]  x
5. then i  i + 1
6. exchange A[i]  A[j]
7. exchange A[i + 1]  A[r]
8. return i + 1

Numerical :

2 13 4 21 7 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Here p = 1, r = 12
x = A[12] = 10
i = p – 1 = 0
j = 1 + 0 = 1

Now, j = 1 and i = 0
A[1] = 2  10 (True)

then i = 0 + 1 = 1 and A[1]  A[1]
Now, j = 2 and i = 1

A[2] = 13 and 1310 (False)
So, j = 3 i = 1

A[3] = 4 and 4  10 (True)
then, i = 1 + 1 = 2 and A[2]  A[3]

i.e., 2 4 13 21 7 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Now, j = 4 and i = 2
A[4] = 21 and 21  10 (False)

j = 5 and i = 2
A[5] = 7  10 (True)

then, i = 2 + 1 = 3 and A[3]  A[5]

i.e., 2 4 7 21 13 56 51 85 59 1 9 10
1 2 3 4 5 6 7 8 9 10 11 12

Now, j = 6 and i = 3
A[6] = 56 and 56 10

So, j = 7 and i = 3
A[7] = 51 and 51  10

Data Structure SP–27 A (CS/IT-Sem-3)

j = 8 and i = 3
A[8] = 85 and 85  10

j = 9 and i = 3
A[9] = 59 and 59 10

j = 10 and i = 3
A[10] = 1  10 (True)

then, i = 3 + 1 = 4 and A[4]  A[10]

i.e., 2 4 7 1 13 56 51 85 59 21 9 10
1 2 3 4 5 6 7 8 9 10 11 12

j = 11 and i = 4
A[11] = 9  10 (True)

i = 4 + 1 = 5 and A[5]  A[11]

i.e., 2 4 7 1 9 56 51 85 59 21 13 10
1 2 3 4 5 6 7 8 9 10 11 12

A[6]  A[12]
Partitioning complete, return value of q :

2 4 7 1 9 10 56 51 85 59 21 13
1 2 3 4 5 6 7 8 9 10 11 12

2, 4, 7, 1, 9, 10, 56, 51, 85, 59, 21, 13

Quicksort (, 1, 12)A

2, 4, 7, 1, 9
56, 51, 85, 59, 21, 13

Quicksort (, 1, 5)A Quicksort (, 7, 12)A

2, 4, 7, 1

1, 2, 4, 7

Quicksort (, 1, 4)A

2, 4, 7

2, 4

Quicksort (, 2, 4)A

Quicksort (, 2, 3)A

56, 51, 85, 59

56, 51

Quicksort (, 8, 11)A

Quicksort (, 8, 9)A

13, 56, 51, 85, 59, 21

56, 51, 85, 59, 21
Quicksort (, 7, 11)A

21, 56, 51, 85, 59

56, 51, 59, 85

51, 56

Solved Paper (2018-19)SP–28 A (CS/IT-Sem-3)

Choice of pivot element affects the efficiency of algorithm :
If we choose the last or first element of an array as pivot element
then it results in worst case scenario with O(n2) time complexity. If
we choose the median as pivot element then it divides the array
into two halves every time and results in best or average case
scenario with time complexity O(n log n). Thus, the efficiency of
quick sort algorithm depends on the choice of pivot element.

b. Construct a B-tree of order 5 created by inserting the
following elements 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4,
16, 18, 24, 25, 19. Also delete elements 6, 23 and 3 from the
constructed tree.

Ans.
Insert 3 : 3

Insert 14 : 3 14

Insert 7 : 3 7 14

Insert 1 : 1 3 7 14

Insert 8 :

8

1 3 7 14

Insert 5 :

8

1 3 5 147

Insert 11 :

8

1 3 5 117 14

Insert 17 :

8

1 3 5 117 14 17

Insert 13 :

8

1 3 5 117 13 14 17

Data Structure SP–29 A (CS/IT-Sem-3)

Insert 6 :

8

1 3 5 117 13 14 17

6

Insert 23 :

8

1 3 5 117 13 17 23

6 14

Insert 12 :

8

1 3 5 117 12 17 23

6 14

13

Insert 20 :

8

1 3 5 117 12 17 20

6 14

13 23

Insert 26 :

8

1 3 5 117 12 17 20

6 14

13 23 26

Insert 4 :

8

1 3 4 117 12 17 20

6 14

13 23 265

Insert 16 :

8

1 3 4 117 12 16 17

6 14

13 23 265

20

Insert 18, 24, 25 :

8

1 3 4 117 12 16 17

6 14

13 23 245

20

18 25 26

Solved Paper (2018-19)SP–30 A (CS/IT-Sem-3)

Insert 19 :

8

1 3 4 117 12 16 17

6 14

13 23 245

20

18 25 2619

Delete 6 :

8

1 3 4 117 12 16 17

5 14

13 23 24

20

18 25 2619

Delete 23 :

8

1 3 4 117 12 16 17

5 14

13 24

20

18 25 2619

Delete 3 :

8

1 4 117 12 16 17

5 14

13 24

20

18 25 2619



SP–1 C (CS-Sem-3)Data Structures

B.Tech.
(SEM. III) ODD SEMESTER THEORY

EXAMINATION, 2019-20
DATA STRUCTURES

Time : 3 Hours Max. Marks : 100

Note : 1. Attempt all Section.

Section-A

1. Answer all questions in brief. (2 × 10 = 20)
a. How can you represent a sparse matrix in memory ?

b. List the various operations on linked list.

c. Give some applications of stack.

d. Explain tail recursion.

e. Define priority queue. Given one application of priority
queue.

f. How does bubble sort work ? Explain.

g. What is minimum cost spanning tree ? Give its
applications.

h. Compare adjacency matrix and adjacency list
representations of graph.

i. Define extended binary tree, full binary tree, strictly binary
tree and complete binary tree.

j. Explain threaded binary tree.

Section-B

2. Answer any three of the following : (3 × 10 = 30)
a. What are the merits and demerits of array ? Given two

arrays of integers in ascending order, develop an
algorithm to merge these arrays to form a third array
sorted in ascending order.

b. Write algorithm for push and pop operations in stack.
Transform the following expression into its equivalent
postfix expression using stack :
A + (B * C – (D/E  F) * G) *H

Solved Paper (2019-20)SP–2 C (CS-Sem-3)

c. How binary search is different from linear search ? Apply
binary search to find item 40 in the sorted array: 11, 22, 30,
33, 40, 44, 55, 60, 66, 77, 80, 88, 99. Also discuss the complexity
of binary search.

d. Find the minimum spanning tree in the following graph
using Kruskal’s algorithm :

a

b

c

d

e

f

g

10

1

2

4

5

67

8

9
9

2

Fig. 1.

e. What is the difference between a binary search tree (BST)
and heap ? For a given sequence of numbers, construct a
heap and a BST.
34, 23, 67, 45, 12, 54, 87, 43, 98, 75, 84, 93, 31

Section-C

3. Answer any one part of the following : (1 × 10 = 10)
a. What is doubly linked list ? What are its applications ?

Explain how an element can be deleted from doubly linked
list using C program.

b. Define the following terms in brief :
i. Time complexity ii. Asymptotic notation

iii. Space complexity iv. Big O notation

4. Answer any one part of the following : (1 × 10 = 10)
a. i. Differentiate between iteration and recursion.

ii. Write the recursive solution for Tower of Hanoi problem.

b. Discuss array and linked representation of queue data
structure. What is dequeue ?

5. Answer any one part of the following : (10 × 1 = 10)
a. Why is quick sort named as quick ? Show the steps of quick sort

on the following set of elements : 25, 57, 48, 37, 12, 92, 86, 33
Assume the first element of the list to be the pivot element.

SP–3 C (CS-Sem-3)Data Structures

b. What is hashing ? Give the characteristics of hash function.
Explain collision resolution technique in hashing.

6. Answer any one part of the following : (1 × 10 = 10)

a. Explain Warshall’s algorithm with the help of an example.

b. Describe the Dijkstra algorithm to find the shortest path.
Find the shortest path in the following graph with vertex
‘S’ as source vertex.

A

S

C D

B
1

10

3 2

5

2

7

9
4 6

Fig. 2.

7. Answer any one part of the following : (7 × 1 = 7)
a. Can you find a unique tree when any two traversals are

given ? Using the following traversals construct the
corresponding binary tree :
INORDER : HKDBILEAFCMJG
PREORDER : ABDHKEILCFGJM
Also find the post order traversal of obtained tree.

b. What is a B-Tree ? Generate a B-Tree of order 4 with the
alphabets (letters) arrive in the sequence as follows :
a g f b k d h i n j e s i r x c l n t u p.



Solved Paper (2019-20)SP–4 C (CS-Sem-3)

SOLUTION OF PAPER (2019-20)

Note : 1. Attempt all Section.

Section-A

1. Answer all questions in brief. (2 × 10 = 20)
a. How can you represent a sparse matrix in memory ?

Ans. There are two ways of representing sparse matrix in memory :
1. Array representation
2. Linked representation

b. List the various operations on linked list.
Ans. Various operations on linked list are :

1. Insertion at beginning
2. Insertion at end
3. Deletion at beginning
4. Deletion at end
5. Deletion of an element at specified location
6. Insertion of an element at specified location

c. Give some applications of stack.
Ans. Applications of stack are :

i. Infix to postfix conversion.
ii. Implementing function calls.

iii. Page-visited history in a web browser.
iv. Undo sequence in a text editor.

d. Explain tail recursion.
Ans.

Tail recursion (or tail-end recursion) is a special case of recursion
in which the last operation of the function, the tail call is a recursive
call. Such recursions can be easily transformed to iterations.

e. Define priority queue. Given one application of priority
queue.

Ans. A priority queue is a data structure in which each element has
been assigned a value called the priority of the element and an
element can be inserted or deleted not only at the ends but at any
position on the queue.
Applications of priority queue : In network communication,
to manage limited bandwidth for transmission, the priority queue
is used.

f. How does bubble sort work ? Explain.

SP–5 C (CS-Sem-3)Data Structures

1. An adjacency matrix is a
square matrix used to
represent a finite graph.

2. The elements of the matrix
indicate whether pairs of
vertices are adjacent or not in
the graph.

3. Space complexity in the worst
case is O(|V|2).

Adjacency list is a collection of
unordered lists used to represent
a finite graph.

Each list describes the set of
adjacent vertices in the graph.

Space complexity in the worst
case is O(|V|+|E|).

Ans. Bubble sort procedure is based on following idea :
a. Suppose if the array contains n elements, then (n – 1) iterations

are required to sort this array.
b. The set of items in the array are scanned again and again and if

any two adjacent items are found to be out of order, they are
reversed.

c. At the end of the first iteration, the lowest value is placed in the
first position.

d. At the end of the second iteration, the next lowest value is placed
in the second position and so on.

g. What is minimum cost spanning tree ? Give its
applications.

Ans. Minimum cost spanning tree : In a weighted graph, a minimum
spanning tree is a spanning tree that has minimum weight than
all other spanning trees of the same graph.
Application of minimum cost spanning tree :

1. Used for network designs.
2. Used to find approximate solutions for complex mathematical

problems.
3. Cluster analysis.

h. Compare adjacency matrix and adjacency list
representations of graph.

Ans.

S. No. Adjacency matrix Adjacency list

i. Define extended binary tree, full binary tree, strictly binary
tree and complete binary tree.

Ans. Extended binary tree : A binary tree T is said to be 2-tree or
extended binary tree if each node has either 0 or 2 children.
Full binary tree : A full binary tree is formed when each missing
child in the binary tree is replaced with a node having no children.

Solved Paper (2019-20)SP–6 C (CS-Sem-3)

Strictly binary tree : If every non-leaf node in a binary tree has
non-empty left and right subtree, the tree is termed as strictly
binary tree.
Complete binary tree : A tree is called a complete binary tree if
tree satisfies following conditions :

a. Each node has exactly two children except leaf node.
b. All leaf nodes are at same level.
c. If a binary tree contains m nodes at level l, it contains atmost 2m

nodes at level l + 1.

j. Explain threaded binary tree.
Ans.

1. To make traversal of nodes more efficient we can utilize space
occupied by the NULL pointers in the leaf nodes and internal
nodes having only one child node.

2. These pointers can be modifies to point to their corresponding in-
order successor, in-order predecessor or both.

3. These modified pointers are known as threads and binary trees
having such type of pointers are known as threaded binary tree.

Section-B

2. Answer any three of the following : (3 × 10 = 30)
a. What are the merits and demerits of array ? Given two

arrays of integers in ascending order, develop an
algorithm to merge these arrays to form a third array
sorted in ascending order.

Ans. Merits of array :
1. Array is a collection of elements of similar data type.
2. Hence, multiple applications that require multiple data of same

data type are represented by a single name.
Demerits of array :

1. Linear arrays are static structures, i.e., memory used by them
cannot be reduced or extended.

2. Previous knowledge of number of elements in the array is
necessary.
Algorithm : Algorithm receives as input indexes i, m, and j and an
array a, where a[i] , ... , a[m] and a[m + 1], ... , a[j] are two sorted in
asecnding order. These two sorted arrays are merged into a single
ascending array.
merge (a, i, m, j) {
p = i // index in a[i] ... a[m]
q = m + 1 // index in a [m + 1] ... a [j]
r = i // index of array C
while (p  m L q  j) {
if (a [p]  a [q]) {

c [r] = a [p] ;
p = p + 1 ;

SP–7 C (CS-Sem-3)Data Structures

else {
c[r] = a[q] ;

q = q + 1 ;
}

r = r + 1 ;
}
while (p  m) {

c [r] = a [p]
p = p + 1 ;
r = r + 1 ;

}
while (q  j)

c[r] = a [q]
q = q + 1 ;
r = r + 1 ;

}
for (r = i to j)

a [r] = c [r]

b. Write algorithm for push and pop operations in stack.
Transform the following expression into its equivalent
postfix expression using stack :
A + (B * C – (D/E  F) * G) *H

Ans. Algorithm for push and pop operations :
Algorithm for PUSH operation :
PUSH (STACK, TOP, MAX, DATA)

1. If TOP = MAX – 1 then write “STACK OVERFLOW and STOP”

2. READ DATA

3. TOP  TOP + 1

4. STACK [TOP]  DATA

5. STOP

Algorithm for POP operation :
POP (STACK, TOP, ITEM)

1. If TOP < 0 then write “STACK UNDERFLOW and STOP”

2. STACK [TOP]  NULL

3. TOP  TOP – 1

4. STOP
Numerical : A + (B*C – (D/E  F)*G) * H

Solved Paper (2019-20)SP–8 C (CS-Sem-3)

1. Elementary condition i.e.,
array should be sorted.

2. It takes less time to search
an element.

3. Complexity is O(log2 n).

4. It is based on divide and
conquer method.

No elementary condition i.e.,
array can be sorted or unsorted.

It takes long time to search an
element.

Complexity is O(n).

It searches data linearly.

Character Stack Postfix

A – A
+ + A
(+ (A
B + (AB
* + (* AB
C + (* ABC
– + (– (ABC*
(+ (– (ABC*
D + (– (ABC*D
/ + (– (/ ABC*D
E + (– (/ ABC*DE
 + (– (/ ABC*DE
F + (– (/ ABC*DEF
) + (– (/ ABC*DEF
* + (– * ABC*DEF /
G + (– * ABC*DEF / G
) + ABC*DEF/G* –
* + * ABC*DEF/G* –
H + * ABC*DEF/G* – H

Resultant postfix expression : ABC*DEF/G* – H* +

c. How binary search is different from linear search ? Apply
binary search to find item 40 in the sorted array: 11, 22, 30,
33, 40, 44, 55, 60, 66, 77, 80, 88, 99. Also discuss the complexity
of binary search.

Ans. Difference :

S. No. Binary search Sequential (linear) search

Numerical :
Given sorted array :

0 1 2 3 4 5 6 7 8 9 10 11 12

11 22 30 33 40 44 55 60 66 70 80 88 99A

To search element 40

SP–9 C (CS-Sem-3)Data Structures

beg = 0, end = 12
mid = (0 + 12)/2 = 6
a[mid] = a[6] = 55  40 (False)
40 < a[6]
end = 6 – 1 = 5
Now, beg = 0 end = 5

mid = (0 + 5)/2=  2.5 = 2
a[mid] = a[2] = 30  40 (False)
40 > a[2]
beg = 2 + 1 = 3
Now, beg = 3, end = 5
mid = (3 + 5)/2 = 4
a[mid] = a[4] = = 40 (True)
loc = 4
So, element 40 is present at location 4.
Complexity of binary search :
The complexity of binary search is O(log2 n).

d. Find the minimum spanning tree in the following graph
using Kruskal’s algorithm :

a

b

c

d

e

f

g

10

1

2

4

5

67

8

9
9

2

Ans.
1. We will choose edge = cf as it has minimum weight.

a

b

c

d

e

f

g

1

2. Now choose edge = cd and fg as it has minimum weight.

a

b

c

d

e

f

g

1

22

Solved Paper (2019-20)SP–10 C (CS-Sem-3)

3. Now choose edge = ab

a

b

c

d

e

f

g

1

2

4

2

4. Now choose edge = eg

a

b

c

d

e

f

g

1

2

4

5

2

5. Now choose edge = bd and discard be, eg, de, df, bc and ac because
they form cycle and we get the final minimal spanning tree as

a

b

c

d

e

f

g

1

2

4

5

2

8

e. What is the difference between a binary search tree (BST)
and heap ? For a given sequence of numbers, construct a
heap and a BST.
34, 23, 67, 45, 12, 54, 87, 43, 98, 75, 84, 93, 31

SP–11 C (CS-Sem-3)Data Structures

1. In binary search tree, for every
node except the leaf node, the
left child has a less key value
and right child has a greater
key value.

2. It guarantees the order (from
left to right).

3. Time complexity to find min/
max element is O(log n).

In heap, for every node other
than the root, the key value of
the parent node is greater or
smaller or equal to the key value
of the child node.

It guarantees that the element
at higher level is smaller or
greater than element at lower
level.

Time complexity to find min/max
is O(1).

Ans. Difference :

S. No. Binary search tree (BST) Heap

Numerical :
Construction of heap :

A = 34 23 67 45 12 54 87 43 98 75 84 93 31
1 2 3 4 5 6 7 8 9 10 11 12 13

Originally,

43 75 9398 84 31

45 12 54

23 67

87

34

1

2 3

7654

8 9 10 11 12 13
l

i

r

For i = 6
MAX-HEAPIFY (A, 6)
l = 12 r = 13
12 < 13 and A[12] = 93 A[6] = 34
A[12] > A[6]
largest  12
13 = 13 A[13] = 31 A[12] = 93
A[13] / A[12]
Exchange A[i]  A[l]
A[6]  A[12]

43 75 5498 84 31

45 12 93

23 67

87

34

i

rl

For i = 5

Solved Paper (2019-20)SP–12 C (CS-Sem-3)

MAX-HEAPIFY (A, 5)
l = 10 r = 11
10 < 13 and A[10] > A[5]
largest  10
11 < 13 and A[11] > A[10]
largest  11
Exchange A[5]  A[11]

43 75 5498 12 31

45 84 93

23 67

87

34

i

l
r

After MAX-HEAPIFY (A, 4)

43 75 5445 12 31

98 84 93

23 67

87

34

i

l r

After MAX-HEAPIFY (A, 3)

43 7545 12

98 84 67

23 93

87

34

i

l
r

After MAX-HEAPIFY (A, 2)

43 7523 12

45 84 67

98 93

87

34
i

l
r

After MAX-HEAPIFY (A, 1)

43 3423 12

45 75 67

84 93

87

98

So, final tree after BUILD-MAX-HEAP is

SP–13 C (CS-Sem-3)Data Structures

43 3423 12

45 75 67

84 93

87

98

Construction of BST :
Insert 34 : Insert 23 :

34
34

23

Insert 67 : Insert 45 :

34

23 67

34

23 67

45

Insert 12 : Insert 54 :

34

23 67

4512

34

23 67

45

54

12

Insert 87 : Insert 43 :
34

67

45 87

54

23

12

34

67

45 87

54

23

12

43

Insert 98 : Insert 75 :
34

67

45 87

54

23

12

43 98

34

67
45

87

54

23

12

43
98

75

Insert 84 :
34

67
45

87

54

23

12

43
98

75

84

Solved Paper (2019-20)SP–14 C (CS-Sem-3)

Insert 93 :
34

67
45

87

54

23

12

43
98

75

84 93

Insert 31 :
34

67
45 87

54

23

12

43
98

75

84 93

31

Section-C

3. Answer any one part of the following : (1 × 10 = 10)
a. What is doubly linked list ? What are its applications ?

Explain how an element can be deleted from doubly linked
list using C program.

Ans. Doubly linked list :
1. The doubly or two-way linked list uses double set of pointers, one

pointing to the next node and the other pointing to the preceding
node.

2. In doubly linked list, all nodes are linked together by multiple links
which help in accessing both the successor and predecessor node
for any arbitrary node within the list.
Applications of doubly linked list are :

1. Doubly linked list can be used in navigation systems where both
front and back navigation is required.

2. It is used by browsers to implement backward and forward
navigation of visited web pages.

3. It is used by various applications to implement undo and redo
functionality.

4. It can be used to represent deck of cards in games.
5. It is used to represent various states of a game.

Deletion from doubly linked list using C program :
#include<stdio.h>
#include<conio.h>
typedef struct n{
int data;
struct n *prev;
struct n *next;
}node;

SP–15 C (CS-Sem-3)Data Structures

node *head = NULL, *tail = NULL;
Function to delete element :
void delete_beg(node *h, node *t) {
if(head == (node*)NULL) {
printf(“\nList is empty.”);
getch();
return;
}
if(head == tail) {
free(h);
head = tail = (node *)NULL;
return;
}
if(h->next == t) {
tail->prev = NULL;
head = tail;
}
else {
head = head->next;
head->prev = NULL;
}
free(h);
}

b. Define the following terms in brief :
i. Time complexity ii. Asymptotic notation

iii. Space complexity iv. Big O notation
Ans.

i. Time complexity
1. The complexity of an algorithm M is the function f(n) which gives

the running time and/or storage space requirement of the
algorithm in terms of the size n of the input data.

2. The storage space required by an algorithm is simply a multiple of
the data size n.

3. Following are various cases in complexity theory :
a. Worst case : The maximum value of f(n) for any possible input.
b. Average case : The expected value of f(n) for any possible input.
c. Best case : The minimum possible value of f(n) for any possible

input.
ii. Asymptotic notation :
1. Asymptotic notation is a shorthand way to describe running times

for an algorithm.
2. It is a line that stays within bounds.
3. These are also referred to as ‘best case’ and ‘worst case’ scenarios

respectively.

Solved Paper (2019-20)SP–16 C (CS-Sem-3)

1. Allows the set of instructions
to be repeatedly executed.

2. Iteration includes
initialization, condition,
execution of statement
within loop and update the
control variable.

The statement in a body of
function calls the function
itself.

In recursive function, only
termination condition (base
case) is specified.

iii. Space complexity :
1. The space complexity of an algorithm is the amount of memory it

needs to run to completion.
2. It is expressed using only Big Oh notation.
3. Algorithm/program should have the less space complexity.
4. Lesser space used by algorithm/program, the faster it executes.

iv. Big ‘Oh’ notation :
1. Big-Oh is formal method of expressing the upper bound of an

algorithm’s running time.
2. It is the measure of the longest amount of time it could possibly

take for the algorithm to complete.
3. More formally, for non-negative functions, f (n) and g(n), if there

exists an integer n0 and a constant c > 0 such that for all integers
n > n0.

f (n)  cg(n)
4. Then, f (n) is Big-Oh of g (n). This is denoted as : f (n)  O(g (n)) i.e.,

the set of functions which, as n gets large, grow faster than a
constant time f (n).

cg(n)

f(n)

n

f(n) = O(g(n))

n0
Fig. 1.

4. Answer any one part of the following : (1 × 10 = 10)
a. i. Differentiate between iteration and recursion.

Ans.

S. No. Iteration Recursion

SP–17 C (CS-Sem-3)Data Structures

ii. Write the recursive solution for Tower of Hanoi problem.
Ans. Fig. 2 contains a schematic illustration of the recursive solution

for TOWER (4, A, B, C) (4 disks, 3 pegs)

TOWER (4, A, B, C)

TOWER (3, B, A, C)

TOWER (2, A, B, C)

TOWER (2, B, C, A)

TOWER (2, C, A, B)

TOWER (2, A, B, C)

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (1, C, B, A) C A

TOWER (1, A, C, B) A B

TOWER (1, B, A, C) B C

TOWER (3, A, C, B)

A C A C 

B A B A 

C B C B 

A C.................... A C 

A B... A B 

 A C ... A C 

B C .. B C 

Fig. 2. Recursive solution to Tower of Hanoi problem for n = 4.
Observe that the recursive solution for n = 4 disks consist of the
following 15 moves :
A B A  C B  C A  B C A C  B A  B A  C B  C
B  A C  A B  C A  B A  C B  C

3. The iteration statement is
repeatedly executed until a
certain condition is reached.

4. Infinite loop uses CPU cycles
repeatedly.

5. Iteration is applied to
iteration statements or loops.

6. Stack is not used.

7. Fast in execution

A conditional statement is
included in the body of the
function to force the function
to return without recursion
call being executed.

Infinite recursion can crash
the system.

Recursion is always applied to
functions.

Stack is used.

Slow in execution.

Solved Paper (2019-20)SP–18 C (CS-Sem-3)

b. Discuss array and linked representation of queue data
structure. What is dequeue ?

Ans. Array representation of queue :
Algorithm to insert any element in a queue :
Step 1 : If REAR = MAX – 1
Write Overflow
Go to step 4. [End of if]
Step 2 : If FRONT = – 1 and REAR = – 1
Set FRONT = REAR = 0
else
Set REAR = REAR + 1 [End of if]
Step 3 : Set QUEUE[REAR] = NUM
Step 4 : Exit
Linked representation of queue :
Algorithm to insert an element in queue :
Step 1 : Allocate the space for the new node PTR.
Step 2 : Set PTR  DATA = VAL
Step 3 : If FRONT = NULL
Set FRONT = REAR = PTR
Set FRONT  NEXT = REAR  NEXT = NULL
else
Set REAR  NEXT = PTR
Set REAR = PTR
Set REAR  NEXT = NULL [End of if]
Step 4 : Exit
Algorithm for deletion of an element from queue :
Step 1 : If FRONT = NULL
Write Underflow
Go to Step 5 [End of if]
Step 2 : Set PTR = FRONT
Step 3 : Set FRONT = FRONT  NEXT
Step 4 : Free PTR
Step 5 : End
Dequeue :

1. In a dequeue, both insertion and deletion operations are performed
at either end of the queues. That is, we can insert an element from
the rear end or the front end. Also deletion is possible from either
end.

Front Rear

Insertion
Deletion

Insertion
Deletion

Fig. 2. Structure of a dequeue.

2. This dequeue can be used both as a stack and as a queue.
3. There are various ways by which this dequeue can be represented.

The most common ways of representing this type of dequeue are :
a. Using a doubly linked list

SP–19 C (CS-Sem-3)Data Structures

b. Using a circular array
Types of dequeue :

1. Input-restricted dequeue : In input-restricted dequeue, element
can be added at only one end but we can delete the element from
both ends.

2. Output-restricted dequeue : An output-restricted dequeue is a
dequeue where deletions take place at only one end but allows
insertion at both ends.

Front Rear

Insertion
Deletion

Deletion

(a) Input-restricted dequeue

Front Rear

Insertion

(b) Output-restricted dequeue

Insertion
Deletion

Fig. 3.

5. Answer any one part of the following : (10 × 1 = 10)
a. Why is quick sort named as quick ? Show the steps of quick sort

on the following set of elements : 25, 57, 48, 37, 12, 92, 86, 33
Assume the first element of the list to be the pivot element.

Ans. Quick sort named as Quick because :
1. It works very fast in most practical cases with time complexity of

O(n log n) in average case.
2. It does not need much extra memory i.e., can be implemented in-

place without time overheads.
Numerical :

25 57 48 37 12 92 86 33
1 2 3 4 5 6 7 8

Here p = 1, r = 8
x = A[1] = 25, i = p – 1 = 0, j = 1 to 7

Now, j = 1 and i = 0
A[1] = 25

then i = 0 + 1 = 1 and A[1]  A[1]
Now, j = 2 and i = 1

A[2] = 57  25 (False)
j = 3 i = 1

A[3] = 48  25 (False)
j = 4 i =1

A[4] = 37  25 (False)
j = 5 i = 1

A[5] = 12 < 25 (True)

Solved Paper (2019-20)SP–20 C (CS-Sem-3)

i = 1 + 1 = 2
Exchange A[2]  A[5]

i.e., 25 12 48 37 57 92 86 33
1 2 3 4 5 6 7 8

Now, j = 6 and i = 2
A[6] = 92  25

j = 7 and i = 2
A[7] = 86 < 25

Exchange, A[2]  A[1]

i.e., 12 25 48 37 57 92 86 33
1 2 3 4 5 6 7 8

q = 2

12, 25, 48, 37, 57, 92, 86, 33
Quicksort (, 1, 8)A

12
48, 37, 57, 92, 86, 33

Quicksort (, 1, 1)A Quicksort (, 3, 8)A

57, 92, 86, 48

92, 86, 57

Quicksort (, 5, 8)A

Quicksort (, 6, 8)A

33, 37, 57, 92, 86, 48

37, 57, 92, 86, 48
Quicksort (, 4, 8)A

48, 92, 86, 57

57, 86, 92

86, 92

Quicksort (, 7, 8)A

92

Quicksort (, 8, 8)A

Sorted array using quick sort

SP–21 C (CS-Sem-3)Data Structures

A = 12 25 33 37 48 57 86 92
1 2 3 4 5 6 7 8

b. What is hashing ? Give the characteristics of hash function.
Explain collision resolution technique in hashing.

Ans. Hashing :
1. Hashing is a technique that is used to uniquely identify a specific

object from a group of similar objects.
2. Hashing is the transformation of a string of characters into a

usually shorter fixed-length value or key that represents the
original string.

3. In hashing, large keys are converted into small keys by using
hash functions.

4. The values are then stored in a data structure called hash table.
5. The task of hashing is to distribute entries (key/value pairs)

uniformly across an array.
6. Each element is assigned a key (converted key). By using that key

we can access the element in O(1) time.
7. Using the key, the algorithm (hash function) computes an index

that suggests where an entry can be found or inserted.
8. Hashing is used to index and retrieve items in a database because

it is faster to find the item using the shorter hashed key than to
find it using the original value.

9. The element is stored in the hash table where it can be quickly
retrieved using hashed key which is defined by

Hash Key = Key Value % Number of Slots in the Table
Characteristics of hash function :

1. The hash value is fully determined by the data being hashed.
2. The hash function uses all the input data.
3. The hash function “uniformly” distributes the data across the entire

set of possible hash values.
4. The hash function generates very different hash values for similar

strings.
Collision resolution technique :
Collision :

1. Collision is a situation which occur when we want to add a new record R
with key k to our file F, but the memory location address H(k) is already
occupied.

2. A collision occurs when more than one keys map to same hash
value in the hash table.
Collision resolution technique :
Hashing with open addressing :

1. In open addressing, all elements are stored in the hash table itself.
2. While searching for an element, we systematically examine table

slots until the desired element is found or it is clear that the element
is not in the table.

3. Thus, in open addressing, the load factor  can never exceed 1.

Solved Paper (2019-20)SP–22 C (CS-Sem-3)

4. The process of examining the locations in the hash table is called
probing.

5. Following are techniques of collision resolution by open addressing :
a. Linear probing
b. Quadratic probing
c. Double hashing

Hashing with separate chaining :
1. This method maintains the chain of elements which have same

hash address.
2. We can take the hash table as an array of pointers.
3. Size of hash table can be number of records.
4. Here each pointer will point to one linked list and the elements

which have same hash address will be maintained in the linked list.
5. We can maintain the linked list in sorted order and each elements

of linked list will contain the whole record with key.
6. For inserting one element, first we have to get the hash value

through hash function which will map in the hash table, then that
element will be inserted in the linked list.

7. Searching a key is also same, first we will get the hash key value in
hash table through hash function, then we will search the element
in corresponding linked list.

8. Deletion of a key contains first search operation then same as
delete operation of linked list.

6. Answer any one part of the following : (1 × 10 = 10)
a. Explain Warshall’s algorithm with the help of an example.

Ans. Floyd’s Warshall algorithm :
1. Floyd Warshall algorithm is a graph analysis algorithm for finding

shortest paths in a weighted, directed graph.
2. A single execution of the algorithm will find the shortest path

between all pairs of vertices.
3. It does so in (V3) time, where V is the number of vertices in the

graph.
4. Negative-weight edges may be present, but we shall assume that

there are no negative-weight cycles.
5. The algorithm considers the “intermediate” vertices of a shortest

path, where an intermediate vertex of a simple path p = (v1, v2, ...,
vm) is any vertex of p other than v1 or vm, that is, any vertex in the
set {v2, v3,..., vm–1}.

6. Let the vertices of G be V = {1, 2,..., n}, and consider a subset
{1, 2, ..., k} of vertices for some k.

7. For any pair of vertices i, j  V, consider all paths from i to j whose
intermediate vertices are all drawn from {1, 2,..., k}, and let p be a
minimum-weight path from among them.

8. Let ()k
ijd be the weight of a shortest path from vertex i to vertex j

with all intermediate vertices in the set {1, 2, ..., k}.
A recursive definition is given by

SP–23 C (CS-Sem-3)Data Structures

()k
ijd = (–1) (–1) (–1)

if 0
min(,) if 1

ij
k k k

ij ik kj

w k
d d d k


  

Floyd Warshall (w) :
1. n  rows [w]
2. D(0)  w
3. for k  1 to n
4. do for i  1 to n
5. do for j  1 to n

6. do ()k
ijd  (–1) (–1) (–1)min(,)k k k

ij ik kjd d d

7. return D(n)

For example : Consider the graph :

3 4

1 2
4

2

3

3

2

16 5

1

Fig. 4.

()k
ijd = (–1) (–1) (–1)min[,]k k k

ij ik kjd d d

()k
ij =

(–1) (–1) (–1) (1)

(1) (–1) (1) (1)

if

if

k k k k
ij ij ik kj

k k k k
kj ij ik kj

d d d

d d d



  

  

  

D(0) =

 6 3 1

0   2

  0 2 3

 1 1 0 4

 4  2 05

1 2 3 4 5

0

3

D(1) =

4 6 3 1

0 9 6 2

6 4 0 2 3

4 1 1 0 4

7 4 3 2 05

1 2 3 4 5

0

3

Solved Paper (2019-20)SP–24 C (CS-Sem-3)

D(2) =

4 6 3 1

0 7 6 2

6 3 0 2 3

4 1 1 0 4

6 3 3 2 05

1 2 3 4 5

0

3

Now, if we find D(3), D(4) and D(5) there will be no change in the
entries.

b. Describe the Dijkstra algorithm to find the shortest path.
Find the shortest path in the following graph with vertex
‘S’ as source vertex.

A

S

C D

B
1

10

3 2

5

2

7

9
4 6

Ans. Dijkstra algorithm :
a. Dijkstra’s algorithm, is a greedy algorithm that solves the single-

source shortest path problem for a directed graph G = (V, E) with
non-negative edge weights, i.e., we assume that w(u, v)  0 each
edge (u, v)  E.

b. Dijkstra’s algorithm maintains a set S of vertices whose final
shortest-path weights from the source s have already been
determined.

c. That is, for all vertices v  S, we have d[v] = (s, v).
d. The algorithm repeatedly selects the vertex u  V – S with the

minimum shortest-path estimate, inserts u into S, and relaxes all
edges leaving u.

e. We maintain a priority queue Q that contains all the vertices in
v – s, keyed by their d values.

f. Graph G is represented by adjacency list.
g. Dijkstra’s always chooses the “lightest or “closest” vertex in V – S to

insert into set S, that it uses as a greedy strategy.

SP–25 C (CS-Sem-3)Data Structures

Numerical :
Initialize :

A

C

S

B

D5

3
9

64

2

1

S = { }

S A B C D
0    

 

 

0 Q :

10

7

2

EXTRACT – MIN (S) :

S = { S }
A

C

S

B

D5

3
9

64

2

1

 

 

0

10

7

2
S A B C D

0    

Q :

Relax all edges leaving (S) :

S = { S }

S A C B D
0    

10 5 – –

Q :

A

C

S

B

D5

3
9

64

2

1





0

10

7

2

10

5

EXTRACT – MIN (C) :

S = { S, C }

S A C B D
0    

10 5 – –

Q :

A

C

S

B

D5

3
9

64

2

1





0

10

7

2

10

5

Relax all edges leaving C :

S = { S, C }

S A C B D
0    

10 5 – –

Q :

A

C

S

B

D5

3
9

64

2

1





0

10

7

2

8

5 8 14 7

EXTRACT – MIN (D) :

S = { S, C, D }

S A C B D
0    

10 5 – –

Q :

A

C

S

B

D5

3
9

64

2

1

0

10

7

2

8

5 8 14 7

14

7

Solved Paper (2019-20)SP–26 C (CS-Sem-3)

Relax all edges leaving D :

S = { S, C, D }

S A C B D

0    
10 5 – –

Q :
A

C

S

B

D5

3
9

64

2

1

0

10

7

2

8

5

8 14 7

13

7 13

EXTRACT – MIN (A) :

S = { S, C, D, A }

S A C B D

0    
10 5 – –

Q :
A

C

S

B

D5

3
9

64

2

1

0

10

7

2

8

5

8 14 7

13

7 13

Relax all edges leaving A :

S = { S, C, D, A }

S A C B D

0    
10 5 – –

Q :
A

C

S

B

D5

3
9

64

2

1

0

10

7

2

8

5

8 14 7

9

7 9

EXTRACT – MIN (B) :
S = { S, C, D, A, B }

S A C B D

0    
10 5 – –

Q :
A

C

S

B

D5

3
9

64

2

1

0

10

7

2

8

5

8 14 7

9

7 9

7. Answer any one part of the following : (7 × 1 = 7)
a. Can you find a unique tree when any two traversals are

given ? Using the following traversals construct the
corresponding binary tree :
INORDER : HKDBILEAFCMJG
PREORDER : ABDHKEILCFGJM
Also find the post order traversal of obtained tree.

Ans. No, we cannot find unique tree when any two traversals are given. If
preorder and postorder are given then we cannot find unique tree. We
can find unique tree if one of the given traversal is inorder.
Numerical :
Step 1 : In preorder traversal root is the first node. So, A is the root
node of the binary tree. So,

A
root

Step 2 : We can find the node of left sub-tree and right sub-tree
with inorder sequence. So,

SP–27 C (CS-Sem-3)Data Structures

A

H, K, D, B, I, L, E F, C, M, J, G

Step 3 : Now, the left child of the root node will be the first node
in the preorder sequence after root node A i.e. B So,

B

A

I, L, E

F, C, M, J, G

H, K, D

Step 4 : Now the root node is D. In inorder sequence, H, K is on
the left side of D. So

B

A

I, L, E

F, C, M, J, G

D

H, K

Step 5 : Now the root is H. In inorder sequence, K is on the right
side of H.

B

A

F, C, M, J, G

D

H

K

E

I

L
Step 6 : Similarly, we can go further for right side of A.

B

A

M, J, GD

H

K

E

I

L

C

F

So, the final tree is

Solved Paper (2019-20)SP–28 C (CS-Sem-3)

B

A

D
H

K

E

I

L

C

F G
J

M

Postorder of tree : K, H, D, L, I, E, B, F, M, J, G, C, A

b. What is a B-Tree ? Generate a B-Tree of order 4 with the
alphabets (letters) arrive in the sequence as follows :
a g f b k d h i n j e s i r x c l n t u p.

Ans. B-tree :
1. A B-tree is a self-balancing tree data structure that keeps data

sorted and allows searches, sequential access, insertions, and
deletions in logarithmic time.

2. A B-tree of order m is a tree which satisfies the following properties :
a. Every node has at most m children.
b. Every non-leaf node (except root) has at least m/2 children.
c. The root has at least two children if it is not a leaf node.
d. A non-leaf node with k children contains k – 1 keys.
e. All leaves appear in the same level.

Construction of B-tree :
Insert a, g, f : a f g

Insert b : a b f g
b

a
f g

split


Insert k, d :
b

a
f g kd

Insert h :
b

f g h k split


b

h k

g

fa d a d

Insert m :
a hd k mf

b g

Insert j :
split


b g b g j

h j k mfa d hfa d k m

SP–29 C (CS-Sem-3)Data Structures

Insert e, s, i :

b

a kd m

g

f

j

he si

Insert r :

b

a kd m

g

f

j

he ri

b

a kd

g

f

j

he is

split


m

r s

split



b

a kd f

j

he i

m

r s

g

Insert x :

b

a kd f

j

he i

m

r s x

g

Insert c :

b

a kc f

j

hd i

m

r s

g

xe

b

a kd

j

h i

m

r s

g

x

c

e


Split

Insert l, n :

b

a kd

j

h i

m

r s

g

x

c

e l n

Solved Paper (2019-20)SP–30 C (CS-Sem-3)

Insert t :

b

a kd

j

h i

m

t

g

x

c

e l

b

a kd

j

h i

m

r s

g

x

c

e l n

n



s

r

t

Split

Insert u :

b

a kd

j

h i

m

t u

g

x

c

e l n

s

r
Insert p :

b

a kd

j

h i

m

t u

g

x

c

e l p

s

rn

Split



b

a d

m

h i

s

t u

g

x

c

e p rn

j

l

k



STUDYZONEADITYA.COM

ENGINEERING ALL CONTENTS
Books, Quantum, Typing Notes, Handwritten Notes,
Practical File's And All Engineering Study Materials
Available Here.

For more details visit and follow touch to icons below

B.TECH STUDY ZONE

B.TECH STUDY ZONE STUDY ZONE

studyzoneaditya.com

www.studyzoneaditya.com

https://www.instagram.com/b.techstudyzone
https://twitter.com/btechstudyzone?s=08
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
https://youtube.com/channel/UCOka9acBU03SYCeVtN82FuQ
http://www.studyzoneaditya.com/
http://www.studyzoneaditya.com/
https://www.instagram.com/b.techstudyzone
https://twitter.com/btechstudyzone?s=08
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
https://t.me/ENGINEERING_ALL_BRANCH_NOTES
http://studyzoneaditya.com/
http://www.studyzoneaditya.com/

	DS _compressed (1)
	A6 New (2)
	Data structure-1 (2)
	A6 New (1)

